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ABSTRACT 

The investigation of electric field strength dependence of the rate of dam-

age introduction, caused by gamma and neutron irradiations in matched silicon 

planar epitaxial transistors is reported. Groups of devices (with varying biases 

applied to the emitter-base and collector-base junctions to allow study of the 

electric field strength dependence) were exposed to ionizing gamma radiation 

from a Co-60 source. Similar experiments were conducted to study the field 

strength dependence of the rate of space-charge volume damage introduction, 

caused by fast neutrons (E>lOkeV, fission source). 

The experimental results indicate that the rate of surface degradation, as 

reflected by the increase of the normalized surface base current component 

(6.IB(y)/IB(O) ) and the reciprocal of th~ surface minority carrier lifetime is an 

4 
increasing function of the electric field strength and the total gamma dose (lxlO 

rads (Si) < Y < lxl 0 6 rads (Si)) . The ionizing gamma induced surface effects are 

significant at low fluences in the swimming pool type reactor and have to be 

subtracted from the total variation in transistor parameters (junction capacit-

ance and base current component) before a meaningful interpretation of the 

fast neutron induced bulk effects can be given. The rate of volume damage 

introduction, K , was investigated in an effort to explain the anamalous behav 
v 

ior of fast neutron induced defect clusters in the high field space charge region 

of silicon p-n junctions. K is observed to be an increasing function of the 
v 

average electric field strength in the p-n jliD.ction during irradiation and a 

decreasing fliD.ction of the neutron fluence. Empirical expressions for the 

surface degradation and rate of volume damage introduction are developed. 
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I~ INTRODUCTION 

Extensive experimental and theoretical investigations1- 16 have established 

the principal characteristics of radiation-induced parameter changes in transis-

tors. The parameter changes of major importance studied are the increase in 

the base current component (.!liB), the increase in the reciprocal common-emitter 

current gain [ tJ. (1/hFE) J , the increase in the reciprocal minority carrier lifetime 

[ .::l (1/r) J , and the change in junction capacitance [ .::l.C ] • These parameter changes 

are a direct result of ionizing radiation induced surface damage, fast neutron in-

duced displacement damage in the bulk space-charge and bulk neutral region, or 

a combination of the two. Many previous studies 1- 11 of radiation damage effects 

on transistor properties have been conducted with the transistor junctions passive 

during irradiation. For transistor applications in circuits, the devices are 

usually active (i.e., bias applied at one or both junctions) during irradiation. It 

is necessary, therefore, to investigate the effect of biasing the junctions during 

irradiation to obtain a correlation between the electric field strength in the june-

tion during irradiation and the parameter changes of interest. 

In analyzing nuclear radiation damage, it is frequently necessary to cal-

culate the effect of a mixed spectrum of neutrons and ionizing gamma radiation. 

Such a situation is encountered in research type reactors, such as the University 

of Missouri - Rolla, 200 kW, BSR type Swimming pool reactor (See Appendix D). 

The ionizing radiation produced from the fission products in the reactor core is 

often of considerable magnitude and is a dominant cause of transistor gain degra-

dation at low neutron fluences. The ionizing radiation induced surface current 
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components and junction capacitance increase must be subtracted from the total 

observed changes before displacement damage effects can be meaningfully ana-

lyzed. The first part of this research effort is concerned with ionizing radiation 

induced surface effects, produced from a Co-60 pure gamma source. The second 

part of the investigation analyzes the fast neutron damage in the bulk space charge 

region of a p-n junction after surface effects have been subtracted. Previous 

investigations have established that the response of silicon planar transistors to 

ionizing radiation varies with the initial conditions1- 3 at the Si-Si02 interface and 

the junction bias applied during irradiation 4- 7• The degradation in silicon surface 

properties is manifested by the enhancement, depletion or inversion of silicon 

surfaces caused by the accumulation of space-charge in the Si02 layer above the 

Si surface resulting in changes in the surface potential of the semiconductor. Fur-

ther, the accumulation of surface states alters the surface recombination velocity 

of minority carriers in the p-n junction 4' 5' 7• The field dependencies of the 

gamma induced parameter changes investigated here are the decrease in the re-

ciprocal forward current gain (as reflected by the increase in the gamma induced 

surface base current component), the surface recombination velocity (as reflected 

by the increase in the reciprocal of the minority carrier lifetime) and the junction 

capacitance. The devices used were specially fabricated matched silicon planar 

epitaxial transistors, whose emitter-base and collector-base junctions were 

biased to different voltages during gamma irradiation to study the field strength 

dependency. 
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Neutron induced defect clusters in silicon transistors have been shown 8- 13 

to behave differently in the high field emitter-base 11space-charge11 region than in 

the low field "neutral'' bulk base reg.ion, both during introduction and annealing. 

This anomalous behavior in both formation and annealing has been attributed by 

some authors to carrier density effects14 or to a modification of the defect clus­

ter by the presence of an electric :field12' 13• It was therefore thought necessary 

to determine if such a field dependence existed through a study of the variation 

of the :rate of space-charge volume damage introduction, K , with junction electric 
v 

field strength. Goben11 has shown that the neutron induced base current compo-

nent of base current originates in the bulk space-charge region of the emitter-

base junction. Hence, it should be dependent on the volume of that region. Su 

12 15 
et al. ' , assumed that K was a constant at all values of neutron fluence. 

v 

However, since K1 is volume independent and a constant for all ranges of neutron 

fluence 15' 16, one would expect K to decrease with increasing neutron fluence, 
v 

since K = K1/x , where x is the depletion layer width at a particular bias volt-
v m m 

age and can be obtained from capacitance-voltage measurements from xm = AE · 

H /C. Groups of matched silicon planar expitaxial devices, with various biases 
0 

applied to the emitter-base junction, were irradiated to various neutron fluences 

to study the electric field strength and neutron fluence dependencies of K • The 
v 

gamma induced parameter changes had to be subtracted before meaningful values 

of K could be obtained. 
v 
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ll. ELECTRIC FIELD STRENGTH DEPENDENCE OF THE IONIZING RADIA­
TION INDUCED SURFACE DAMAGE 

A. Introduction 

Experimental and theoretical investigations1- 7' 17- 19 have established 

that the response of silicon planar transistors to ionizing radiation varies with 

the initial conditions at the Si-Si02 interface and the junction bias applied during 

irradiation. The degradation in silicon surface properties is manifested by the 

enhancement, depletion or inversion of silicon surfaces caused by the accumula-

tion of space charge in the Si02 layer above the Si surface resulting in changes 

in the surface potential of the semiconductor and, further, the accumulation of 

surface states alters the surface recombination velocity in the p-n junction. The 

field strength dependencies of the gamma induced parameter changes investigated 

here are the increase in the reciprocal forward current gain (as reflected by the 

increase in the gamma induced base current component), the increase in the sur-

face recombination velocity (increase in the reciprocal of the minority carrier 

lifetime) and the junction capacitance. 

B. Experimental Procedure 

The devices used in the present investigation were specially fabricated 

silicon planar epitaxial matched transistors (SA7472) manufactured by Texas In-

struments. Groups of devices with varying biases applied to the emitter-base 

and collector-base junctions (to study the electric field strength dependence) were 

exposed to ionizing gamma radiation. The gamma radiation was obtained from a 

5000 Curie Cobalt-60 source, at the University of Missouri - Columbia Research 

Reactor Facility. 
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Current-voltage characteristics for the test devices before and after each 

irradiation step were measured and recorded by an Automatic Data Acquisition 

20,21 
System , with an overall absolute accuracy of~ 1% of reading and a precision 

of ~ 0. 3% of reading in the range from 10-10 amperes to 2 x 10-1 amperes (over 9 

decades). For comparison of devices with various geometries, the perimeter de-

22 
pendence of the base-emitter region was normalized by dividing by the pre-

irradiation base current, IBO. The Tektronix oscilloscope 23 Type 555 with the 

Tektronix Type S Recovery-time plug-in Unit was used for lifetime measurements. 

The effective minority carrier lifetime is the time necessary for the number of 

minority carriers injected during forward conduction of a p- n junction to decrease 

to 0. 36 7 (1/ e) of the original number after termination of the forward currents. 

The junction capacitance was measured by a Micro-Instrument Digital Capacitance 

24 
Tester and corrected for socket and header capacitances. Current-voltage char-

acteristics, junction capacitance and lifetime measurements were measured at 

0 
room temperature (27 C) after each irradiation step. 

C. Field Strength Dependence of the Gamma-Induced Surface Current Components 

The reduction in transistor current gain by ionizing radiation-induced 

surface effects is caused by introduction of additional base current components 25 

The two base current components generated by ionizing radiation, which domi-

nate (1/hFE) at low currents are surface recombination-generation current, ISRG' 

25 . 
and surface channel current, ICH . The ISRG component 1s produced by re-

combination in the base-emitter space-charge region at the Si02 -Si interface 

where a high concentration of recombination centers exists. The I SRG current 
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component varies with base-emitter forward voltage as exp (qV BE/nkT), where 

the typical25 range of n is 1. 3 to 2. The surface channel component of current 

6 

ICH' at the base-emitter junction also varies as exp (qV BE/nkT). The exponen·-

tial slope term, n, for this case, is greater than 2. 

Figure Il-l is a plot of the current-voltage characteristics of test device 

# 21 (emitter-base junction reverse biased to 3. 0 volts during irradiation) from 

pre-irradiation to saturation dose levels. At lower current levels, the reciprocal 

slope term "n11 is seen to increase from 1. 4 before irradiation to 2. 25 at a satu-

6 
ration dose level of ~10 rads (Si). This indicates that the ISRG current com-

ponent dominates at lower doses, and the ICH current component dominates at 

doses near saturation and that the channel is very small. This would be expected 

since the build up of space charge in the oxide increases with the accumulated 

dose until it is of sufficient magnitude to invert the p type base at the surface, 

(heavily doped on the emitter side) resulting in channel formation. Interestingly, 

nn" is observed to be a constant over a wide range of current levels at low and 

moderate current levels. At higher current levels "n" is observed to decrease 

slightly as would be expected from increased recombination in the bulk base re-

gion at higher levels. To study the surface degradation at the collector-base 

junction, current-voltage characteristics were taken with the device operating in 

the inverse configuration. Figure II-2 is a plot of the I-V characteristics of de-

vice # 23 (collector-base junction reverse biased to 3. 0 volts during irradiation) 

at different doses. The reciprocal slope term, "n", is observed to increase very 

rapidly from 1. 23 before irradiation to 7. 4 at saturation doses. Similar values 
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t:Q 
H 

0.3 

o Pre-irradiation 

6 y = 1.12xl0 5rads(Si) 

o y = 2.24xl0 5rads(Si) 

v y = 3.36xl0 5rads(Si) 

0 y = 6.72xl0 5rads(Si) 

0.35 0.4 0.45 
VBE (Volts) 

0.5 0.55 

Figure II-1. Current versus voltage for device # 21 at 
different dose levels with the emitter-base 
junction reverse biased to 3.0 volts during 
irradiation. 

7 



www.manaraa.com

0.3 0.35 

n=l.23 

0.4 

o Pre-irradiation 

6 y = 1.12xl0 5rads(Si) 

o y = 2.24xl0 5rads(Si) 

~ y = 3.36xl0 5rads(Si) 

0 y = 6.72xl0 5rads(Si) 

0.45 0.5 0.55 

VBE(Volts) 

Figure II-2. Current versus voltage for device # 23 at 
different dose levels with the collector­
base junction reverse biased to 3.0 volts 
during irradiation. 

8 
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for the reciprocal slope term, "n", were obtained by Sah25 indicating the domi-

nance of the surface channel current component. The observed channel forma-

tion at low gamma doses on the collector side of the p-type base can be attributed 

to a lower dopant concentration at the surface (caused by diffusion of impurity 

atoms under the oxide mask during fabrication) resulting in inversion at much 

lower doses. 

Table Il-l lists the normalized increase in base current for gamma doses 

from 1.12 x 105 to 1. 34 x 106 rads (Si) for the three bias conditions at the emitter-

base junction during irradiation. The base currents were measured at V BE = 

500mV, IC = 5J.LA. 

TABLE Il-l. Normalized base current increase for SA 7472 devices (#21, #27, 
#08) at different gamma doses . 

Device #21 Device #27 Device #08 
Total Gamma E=1 . 26xl o5 VI em E=4.6xl04 V/cm E=2. 7lx104 V/cm 

~ IB("Y) ~ IB("Y) 6 IB("Y) 
Dose Rads (Si) 

IB(o) IB(o) IB(o) 

1.12x10 
5 

7.5 3.5 2.6 

2.24xl05 15.5 7.9 7.2 

3.36x10 
5 18.2 11.5 9.1 

6.72x10 
5 

23.0 16.9 12.5 

6 
25.5 18.4 13.9 1. Olx10 

6 
25.2 17.2 15.0 1. 34x10 
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The changes with gamma irradiation are seen more readily if one plots 

the change in base current, normalized by the pre-irradiation base current ver-

sus the total absorbed gamma dose. Figure II-3 illustrates a group of such plots 

(Curves A, B, C) from the data in Table TI -1 for the three field strengths used 

in this study. The form of the curves may be immediately recognized from this 

plot as K { 1-e:xp(- a:Y ) } and in particular, one may write: 

{1-exp (- a{Er) • 'Y ) } (Il-l) 

where the damage saturation parameter, K , and damage introduction rate, a , 
s 

are called out explicitly as functions of the junction electric field strength pres-

ent during exposure (E ) • Plotting K versus the average junction electric field 
r s 

strength gives the expressions: 

Similarly 

K (E ) = 0.19 x E O .42 
s r r 

a (E ) may be written as: 
r 

-6 -11 
a(E) =1.67x10 +E (1.40x10 ) 

r r 

5 5 
= (1 + E /1.2 X 10 )/6. 0 X 10 

r 

Combining equations (II-1), (II-2) and (II-3) yields the empirical equation: 

·\ / (V 0.42 
AIB(VBE'Er,'Y Y" 1Bb BE)= 0 · 19Er 

5 5 ] • { 1-exp [ (1 + E/1. 2 X 10 ) • Y /6.0 X 10 } 

(II-2) 

(TI-3) 

(ll-4) 

The solid lines (A, B, C) in Figure II-3 are plots of equation (II-4) and good agree-

ment with experimental data are noted. Curves D and E (Figure n-3) are 
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5 (A): Er = 1.26x10 V/cm. 

4 (B): Er = 4.6x10 V/cm. 
4 (C): Er = 2.7lxl0 V/cm. 

(D) : CB reverse biased (3.0 Volts) 
during irradiation. 

(E) : CB forward biased (0.5 Volts) 
during irradiation. 
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-- -..Q-------- -(E)~ 
Er: electric field strength at the 

emitter-base junction during 
irradiation. 
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Total Gamma Dose rads(Si)xl05 

20 

Figure II-3. Normalized base current increase versus total gamma dose for 
devices with varying junction electric field strengths dur­
ing irradiation. 

..... ..... 
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typical plots of the normalized increase in the base current versus gamma dose 

for similar devices with the collector-base junction biased to 3. 0 volts (reverse) 

and 0. 5 volts (forward), respectively. The saturation value of the surface damage 

at the emitter-base junction at larger doses is found to be greater for the reverse 

biased collector-base junction (Curve D) than for both junctions unbiased (Curve 

B) and the forward biased collector-base junction (Curve E). Similar results have 

been reported by Nelson and Sweet5, although no explanation was given by them 

for the effect of collector-base biasing on the degradation of the emitter efficiency. 

These results may be explained if one realizes that a reverse biased collector-

base junction has the effect of reverse biasing the emitter-base junction, and a 

forward biased collector-base junction has the effect of forward biasing the emitter-

base junction to maintain zero emitter current at the open emitter. For both 

cases of biasing, surface effects are observed to saturate at about 106 rads(Si), 

as reflected by the very small change in gamma-induced current above this dose. 

D. Surface Minority Carrier Lifetime Measurements 

Ionizing radiation is known to induce surface states, which act as recom-

b. t· t .c • ·ty . 4 ' 25 ' 26 Th . ·ty . lif t· 1na 1on cen ers .tOr m1non earners • e m1non -earner e 1me 

(related to the reciprocal of the surface recombination velocity) is one of the 

several parameters used to determine surface degradation of a device. The effect 

of the junction electric field strength on the degradation of the minority carrier 

lifetime is investigated by plotting (1/ T B - 1/ T 0) versus the accumulated gamma 

dose, y. (T 0 and T B are the pre-irradiation and post-irradiation minority car-

rier lifetimes, respectively). A typical plot for the special devices is shown in 

Figure II-4. The form of the curves can be written as: 
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(1/r - 1/r ) =K (E) • {1- exp(a,.. (Er) • Y )} 
B · 0 T r • 

(II-5) 

The lifetime saturation parameter, K T , can be expressed as: 

• Em= 95.5 · E 0 · 68 
r r 

(II -6) 

and the lifetime damage introduction rate is given by: 

(ll-7) 

The similarity of the forms of equations (II-1) and (II-5) indicates that the 

degradation of the surface minority carrier lifetime follows a trend similar to the 

normalized base current increase. This should be expected since surface states 

act as recombination centers for the minority carriers, thus increasing both the 

surface recombination-generation base current component and the surface recom-

bination velocity. It is thus found feasible to use this prediction technique to 

study changes in junction parameters of silicon planar matched devices having 

similar initial characteristics (hFE, IB, 7 B) and operating under different bias 

conditions when exposed to various doses of ionizing radiation 26 

E. Junction Capacitance-Voltage Measurements 

7,11 
In 1968 Su et al. , examined the effect of biasing the collector -base 

junction to various biases during neutron irradiation (in a Swimming Pool Type 

Reactor Core). The reverse biased device showed a marked increase in capacitance 

compared to the unbiased and forward biased devices. The increase in capacitance 

14 2 
was seen to saturate at a neutron fluence of about 1 x 10 neutrons/ em indicating 

that formation of surface channels saturate at a dose of about 10 6 rads (Si) of 

ionizing radiation which accompanies this neutron fluence. In this study junction 
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capacitance measurements were made on a group of SA7472 devices at various 

gamma dose levels. Table II-2 lists the normalized collector-base junction ca-

pacitances (C( 'Y)/C(O) ) for devices with varying electric fields at the collector­

base junction during irradiation from 0 to 1. 01 x 106 rads (Si): 

TABLE II-2. Normalized collector-base junction capacitance for SA 7472 devices 
(#23, #27, #19) at different gamma doses. 

Device #23 Device #27 Device #19 
Total Gamma E=4.9xl04V/cm E=6. 33xl o3v em E=l. 20xi03V /em 
Dose C(y) C('Y) C('Y) 
Rads (Si) C(O) C(O) C(O) 

0.0 1.00 1. 00 1. 00 

1.12x10 
5 

1. 09 0.99 1. 00 

2.24x10 
5 

1. 08 1. 00 1. 00 

3.36x10 
5 

1.74 1.02 1. 00 

5 
6.72x10 2.22 1. 03 1. 01 

6 
1. 01x10 2.22 1.04 1. 01 

The rapid :increase in the junction capacitance for the reverse biased 

4 
collector-base junction (E = 4.9 x 10 V/cm) (Figure II-5) indicates an increase 

r 

in the junction area caused by the formation of surface channels. The resultant 

ICH current component varies with base collector voltage (the devices were 

operat:ing in the :inverse configuration) as exp (qV BE/nkT), where n is observed 

to range from 4 to 7. 

The rate of surface degradation, as reflected by the increase in the surface 

base current component surface recombination velocity and junction capacitance is 
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observed to be strongly dependent on the electric field strength at the junction dur­

ing exposure 26• This can be attributed to the dependence of the build up of positive 

charge in the Si02 layer above the space-charge region and surface states at the Si­

Si02 interface on the strength of the junction fringing field. A reverse biased junc­

tion, has the maximum fringing electric field strength, and hence one would ex­

pect the positive charge build up above the p-type base in the n-p-n device to be 

the greatest in this case. 
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III. DETERMINATION OF TRANSISTOR PARAMETER CHANGES CAUSED 
BY A MIXED FIELD OF NEUTRON AND GAMMA IRRADIATIONS 

A. Mechanisms of Interactions of Nuclear Radiation with Semiconductor 
Materials 

As discussed by Larin 27 , the observed changes in the electrical behavior 

of semiconductor devices exposed to a radiation environment are caused by two 

fundamental effects of radiation in semiconductor material, displacements and 

ionization. Displacement refers to the physical damage to a crystal lattice 

produced by displacing an atom from its normal lattice position. Ionization is 

the freeing of orbital electrons from an atom to form ionized atoms and free 

electrons. Ionization is an intermediate process for both transient and surface 

effects of radiation and since the amount of ionization is proportional to the 

energy deposited for typical energies of nuclear radiation, the effects per rad 

are the same, no matter what radiation caused the ionization 27 . The typical 

transient effect is an electrical current that decays after a radiation pulse, 

while surface effects can persist for periods of years after the radiation 

exposure. Since displacement damage effects are produced by the disruption 

of the normal crystal structure in the bulk of a semiconductor device, this 

type of damage is sometimes called bulk radiation damage, particularly when 

discussed in relation to surface damage. The bulk and surface damage persist 

after the device is removed from the radiation field and appreciably affect 

18 

transistor parameters. An understanding of the physical-electrical relationships 

is the basis of the technique by which the physical relationships of a specific 
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device are inferred from its electrical behavior. Changes in the impurity 

concentrations , minority carrier lifetimes, and carrier concentrations 

can be calculated for a given radiation exposure. In analyzing nuclear 

radiation damage, it is frequently necessary to calculate the effect of a 

mixed spectrum of neutrons and ionizing gamma radiation. There is con­

siderable evidence28- 31 supporting the defect cluster model in the bulk 

material caused by fast neutrons (E>lO keV) in contrast to the ionizing 

4 6 
radiation induced surface damage at low gamma doses [ (1 0 to 10 rads (Si) J . 

B. Effect of a Mixed Radiation Spectrum on Junction Capacitance 

The p-n junction capacitance depends explicitly on the junction area 

and the space-charge concentration at the edges of the depletion layer. The 

ionizing gamma radiation present in the nuclear reactor will induce positive 

space-charge build up in the passivating layer above the p-n junction. This 

positive charge build up on the p type base, will cause inversion and channel 

formation, thus increasing the effective junction area and the capacitance. 

The fast neutron-induced carrier removal caused an increase of the depletion 

layer width and hence a decrease in capacitance. The simultaneous effect of 

19 

ionizing gammas and fast neutrons on the junction capacitance variation is shown in 

Figure III-1. The collector-base junction capacitance versus total neutron 

fluence (E > 10 keV) with measurement voltage as a parameter for an S.F2523 

silicon planar device is plotted in Figure III-1 from the data 32 listed in Table 

ill-1. The initial increase in the junction capacitance can be attributed to the gam-

ma induced surface effects. The maximum value of capacitance is reached at a 
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TABLE III-1. Normalized collector-base junction capacitance for SF2523 
device at different measurement voltages and neutron fl.uences 
(with accompanying gamma doses). 

Neutron Fluerpe, Gamma 16V Reverse 0. 8V Reverse Zero volts 

20 

neutrons/em Dose rads (Si) (measurement) (measurement) (measurement) 
¢ y bias bias bias 

(capacitance) (capacitance) (capacitance) 
pf pf pf 

0 0 3.62 6.34 8.44 

12 4 
4.9 X 10 5. 39 X 10 3.62 6.31 8.36 

13 5 
1.07 X 10 1.17x10 3.59 6.24 8.30 

13 5 
1. 97 X 10 2.17x10 3.54 6.20 8.25 

3. 77 X 10 
13 

4.15 X 10 
5 

3.50 6.22 8.12 

6.14 X 1013 6.75x10 
5 

3.56 6.59 8.19 

13 5 
8.19 X 10 9.01 X 10 3.93 6.57 8.50 

1. 02 X 10 
14 

1.12 X 10 
6 

3.92 6.51 8.45 

14 6 
1.79 X 10 1.97 X 10 3.88 6.50 8.37 

14 6 
2. 31 X 10 2.54 X 10 3.78 6.38 8.35 

14 6 
2. 84 X 10 3.12 X 10 3.51 6.10 8.22 

14 6 
3.30 X 10 3.63xl0 3.52 6.06 7.94 

4.1 
14 6 

X 10 4.51 X 10 3.43 5.92 7.84 
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neutron fl.uence of about 1014 neutrons/cm2, which corresponds to a dose of 

about 106 rads (Si), after which the surface effects are observed to saturate. 

Further irradiation beyond 1 o14 neutrons/ em 2, causes the junction capacitance 

to decrease, indicating the dominance of neutron induced carrier removal at 

higher fl.uences. The decrease in capacitance is attributed to the carrier re­

moval by fast neutrons, which results in the increase in the depletion layer 

width. The thick lines in Figure III-1 are the junction capacitance changes for 

a combined field of neutron and gamma radiation. · The broken curve indicates 

the junction capacitance change attributed to carrier removal by neutrons alone 

after the gamma induced capacitance increase has been subtracted. This 

technique of removing the effects of gamma induced surface effects is impor­

tant when capacitance-voltage data is used in determining the impurity profile 

in the vicinity of the p-n junction at various neutron fluence levels32. Similar 

results were reported by Su et al. 12 , who studied the effect of biasing the 

collector-base junction on the capacitance changes at low neutron fluences, 

where the gamma dose is the dominating factor in degradation of transistor 

characteristics. 

C. Separation of Gamma and Neutron Induced Base Current Components 

A nuclear radiation field of fast neutrons and gamma photons will 

induce several components of base current in a transistor. The observed 

increase in the base current is the sum of neutron-induced space-charge com­

ponent, the neutron-induced neutral-base region recombination component and 

the ionizing radiation induced surface components of current. For calculating 
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the rate of space charge volume damage introduction, K , it is essential that 
v 

the neutron-induced space-charge recombination current be accurately deter-

mined. This fraction of the total base current increase, A IB<I> , which origi-

8-11 
nates in the emitter-base space-charge volume and is attributable only to 

neutrons, may be calculated over a wide range of currents by subtracting the 

gamma induced surface current component and the neutron induced neutral 

base region current component from the total current change. 

The expression for this operation may be written as: 

23 

(lli-1) 

where, 

A IB = the measured total change in the base current caused by the 

introduction of the bulk space-charge recombination current 

plus the neutron-induced increase in the neutral-base recom-

bination current and the gamma-induced surface current (am-

peres) t 

A r0 = the measured decrease in the collector current due to the neutron­

induced increase in the neutral-base region recombination 

(amperes) t 

z = ratio of increase in the neutral-base region current component 

to decrease in collector current (1. 75 for the 2N914 devices 

. 10,33 
studied) t 
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IBO · f = empirical expression for the addition of surface currents in 

terms of the initial base current and the electric field strength 

t d . . di t• 26' 34 presen urmg 1rra a 1on 

The gamma induced surface current component, ISRG, is introduced by 

the surface recombination generation of carriers by the 11 fastn surface states 

present at the intersection of the p-n junction and the oxide layer 4 ' 5 ' 25 . This 

separation is done using the equation Il-l (see Chapter II) relating the gamma-

induced surface current to the initial base current and the field present during 

24 • 35 t · · · d" t· Th f th . d . d f exposure o Ionizing ra 1a wn. e use o e expression er1ve or 

Cobalt-60 gamma dose-induced currents to remove the surface current 

component for this fission source is justified on the basis of the proximity 

of the average photon energies for the two sources 36 

D. Method of Calculating the Rate of Fast Neutron Induced Space-Charge 
Volume Damage Introduction 

The fast neutron induced change in transistor parameters can be deter-

mined after taking into consideration the gamma induced surface effects. · The 

rate of space-charge volume damage introduction, K , can then be determined 
v 

. 12 15 
from the express10n ' 

24 

(III-3) 
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25 

where, 

= space charge region neutron-induced base current component, 

K 
v 

~ 

q 

VBE 

n 

k 

T 

X 
m 

= effective emitter area (em 2), 

-3 -2 = rate of volume damage introduction (amperes· em /n• em ), 

2 = neutron fl.uence (neutrons/ em , E > 10 keV), 

= electric charge {coulombs), 

= base-emitter bias (volts), 

= reciprocal slope term ""'1. 5, 

= Boltzman' s constant {e V fK), 

0 = temperature ( K), 

= base-emitter depletion layer width (em). 

The space-charge region neutron-induced base current component, 

A~q;' is primarily responsible for degradation of silicon device current gain at 

low and intermediate current levels through degradation of the emitter efficieney. 

To determine the dependence of the rate of the space-charge volume damage intro-

duction, K , on neutron fl.uence, the magnitude of the neutron-induced space­
v 

charge component of base current, ~ip' the voltage dependence of this component 

(i.e., the reciprocal slope term, n), and the volume of the emitter-base space-

charge region (AE • xm (V BE'~)) must be determined. 

Since the base current is composed of several current components 9- 11 •37, 

direct measurement of the neutron-induced space-charge component of base cur-

rent over anything but a small portion of the device current-voltage character-
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istics is not possible . At intermediate and moderate current levels the changes 

in only two base-current components dominate the total base current change. 

The first is the neutron-induced space-charge component and the second is the 

neutron-induced neutral-base region recombination component. It has been re-

ported previously that the neutron-induced space-charge component dominates 

the base current changes at lower fl.uences and/ or low current levels and that 

the neutron-induced neutral-base component dominates at higher fluences and/ 

. 8-11 33 . 
or high current levels • . (The above statement holds when the deVIces are 

irradiated in a neutron field alone.) The earlier experiments referenced8-ll 

38,39 
were performed at the Sandia Pulsed Reactor Facility (SPRF) which has a 

very low gamma to neutron ratio. The University of Missouri-Rolla Research 

Reactor used in this group of experiments has a gamma to neutron ratio of 

-8 -2 
1.1 x 10 rads (Si)/n · em . Consequently, it is necessary to remove the 

gamma-induced surface current from the base current changes in order to 

study the bulk effects. (This has been shown in Section ID-C.) 

The reciprocal slope term, n, has been determined previously for neutron 

irradiated devices and was found to vary for 0.15 eV <I Ei -ER I< 0. 35 ev. 

as: 
32,40 

(Ill-4) 

where, 
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v = the diffusion potential (volts), 
T 

E. = the intrinsic Fermi energy (eV), 
1 

ER = the defect energy (eV), 

the electron capture cross-section (em 
-2 

<1n = ) ' 

hole capture cross-section (em 
-2 

<1 = ) ' p 

n = the reciprocal slope term. 

The emitter area, AE, was obtained from the manufacturer and was 

verified by optical measurements . The depletion layer width was calculated 

after each irradiation from the capacitance voltage measurements using the 

expression: 

where, 

c 

Eo 

X (V ,cp) = 
m 

f.' E A 
o E 

C(V,¢) 

= corrected emitter-base junction capacitance (farads), 

= permittivity of free space (farads/em), 

= relative permittivity. 

(III -5) 

27 

The junction capacitance, as measured by a Micro-Instrument Digital 

Capacitance Tester24 and corrected for socket and header capacitance, consists 

of the junction capacitance and the diffusion capacitance. 

The neutron fluence dependence of K was then determined from (III -3) 
v 

using (III-1), (III-2), (III-4), and (III-5). 
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IV. EXPERIMENTAL DETERMINATION OF THE NEUTRON FLUENCE AND 
ELECTRIC FIELD STRENGTH DEPENDENCIES OF THE RATE OF SPACE­
CHARGE VOLUME DAMAGE INTRODUCTION 

A. Experimental Procedure and Results 

Measurements were made on a group of matched devices whose emitter-

base junctions were biased differently to produce varying magnitudes of electric 

field strengths during neutron irradiation, to determine if the space-charge 

volume damage introduction rate, K , was dependent on the p-n junction electric 
v 

field strength present during irradiation. Initially three matched Motorola devices 

(See Table IV-1) were irradiated simultaneously in one stepto a neutron fluence 

14 2 6 . 
of 1 x 10 neutrons/em (E>10 keV) and a gamma dose of 1.1 x 10 rads (S1), 

as a quick check for the existence of an electric field strength dependence. The 

collector current, base current, and junction capacitance were measured versus 

voltage after irradiation and K was calculated (at 500 mV forward bias) by 
v 

the method discussed in Chapter m-D for each of the matched devices. The 

resultant rates of volume damage introduction are plotted as a function of 

junction electric field strength during irradiation in Figure IV -1 and show 

clearly that K is indeed affected by the magnitude of the junction electric 
v 

field· K is observed to be an increasing ftmction of the electric field strength. 
' v 

The reciprocal of the junction capacitance (and accordingly the emitter-

base depletion layer width) was found to be an increasing function of neutron 

14 2 
fluence for fl.uences above 1 x 10 neutrons/em . This was attributed to a 

neutron-induced carrier removal phenomenon whereby the device net impurity 

profile is altered, thereby affecting junction parameters32 •40 . Since the deple-
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TABLE IV -1 Listing of test devices and experimental conditions for 
fast neutron irradiation experiments. 

Device Average Total 
Code Number Manufacturer Au Doped 

a 
Field (volts/em} 

2N914 11* Motorola Yes 1.13 X 10 
5 

2N914 16* Motorola 
4 

Yes 3.90 X 10 

2N914 32* Motorola 
4 

Yes 1.20 X 10 

+ 5 
SA7472 79 Texas Inst. No 1.26x10 

+ 4 
SA7472 45 Texas Inst. No 4.61x10 

+ 4 
SA7472 24 Texas Inst. No 2.71 X 10 

SA7472 25 Texas Inst. No 2.50x10 
5 

SA7472 18 Texas Inst. No 1. 00 X 10 
5 

SA7472 15 Texas Inst. 
4 

No 1.30x10 

* Three "off-the-shelfl1 Motorola 2N914 Transistors, whose junction capa-
citance at zero bias and collector and base currents over V range of 
0. 2 to 0. 7 volts were matched to within 10%. BE 

+ Three specially fabricated Texas Instruments devices similar to the 
2N914, but without gold doping, whose junction capacitance at zero 
bias and collector and base currents over a V BE range of 0. 2 to 0. 7 
volt were matched to within 5% . 

a All neutron irradiations were performed at the University of Missouri­
Rolla 200 kW swimming pool reactor. A double walled aluminum sample 
chamber was used to hold the devices. The inner space of the chamber 
is filled with boron carbide, to allow only fast neutrons (E> 10 keV) to 
bombard the devices. A gamma flux of 1.6 x 104 rads (Si) sec-1 is obtained 
with a fast neutron flux of 1.4 x 1012 neutrons cm-2 sec -I. 

29 
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tion layer width, x , is directly dependent on applied junction bias, the x rs 
m m 

for four devices each at different biases were normalized to their preirradiation 

value to remove the voltage dependence. The normalized values were then 

averaged in order to establish the relative variation of x with neutron fluence 
m 

which is shown in Figure IV -2. This plot indicates that the effective depletion 

layer width (at any particular bias) increases with increasing fluence, especially 

14 2 
for fluences above 1 x 10 neutrons/em (E>lO keV). Hence, we would ex-

pect Kv to be a decreasing function of neutron fluencf?. 

Further experiments were conducted on six of a group of special devices fab-

ricated by Texas Instruments , to fully determine the junction electric field strength 

and neutron fluence dependencies of the space-charge region rate of volume 

damage introduction. These devices were irradiated to a total fluence 

15 2 
of 1.1 x 10 neutrons/em (E>10 keV) in 28 steps. Capacitance-voltage and 

current-voltage data were taken after each irradiation step and the rate of 

volume damage introduction computed (at 500 mV forward bias) by the method 

previously discussed. 

It is of interest to examine the current-voltage characteristics of the 

three matched devices, one of which was forward biased, one unbiased, and the 

other reverse biased during irradiation, corresponding to average junction 

electric field strengths of 2. 7 x 10 4 volts/ em, 4. 6 x 10 4 volts/ em and 1. 26 x 10 5 

volts I em. , respectively. Current-voltage characteristics for this set of devices 

at a fluence of 1 x 1015 neutrons/cm2 (E>10 keV) are shown in Figure IV-3. The 

collector current is found to be invariant with the emitter-base junction field 
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Figure IV-3. Current versus voltage for specially fab­
ricated TI devices at different electric 
field strengths at the emitter-base junction 
during irradiation. 
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strength existing during irradiation. This should be expected since the collector 

current would be affected only by recombination in the neutral base region. The 

base current depicted in Figure IV -3 is observed to vary with the junction 

electric field strength existing during irradiation. From the slope of the base 

current at intermediate current levels, this variation can be seen to be dominated 

by changes in the neutron-induced space-charge region recombination current 

component rather than by surface effects. It should be noted here that the data 

in Figure IV -3 is for a relatively high neutron fluence and surface effects (which 

have saturation characteristics such that bulk damage dominates at higher fluences) 

would not be detected easily at this fluence by a 11 slope change11 since the gamma­

induced surface effects begin to saturate at 1 - 2 x 105 rads (Si), corresponding 

13 2 6 
to ..... 1 ... 2 x 10 n/cm , and are completely saturated at 10 rads (Si), corres-

ponding to ....... 1014 n/ em 26 ' 35 . The recombination in the emitter-base space-charge 

region is observed from Figure IV -3 to increase with increasing electric field 

strength indicating that the severity of neutron-induced recombination at higher 

fluences in the space-charge region of an operating device is governed by the 

magnitude of the electric field present in the p-n junction during irradiation. 

The values for the rate of volume damage introduction at various neutron 

fluences and junction electric field strengths are given in Table IV-2. K (cp), the 
v 

damage rate attributable only to neutrons is calculated after subtracting the sur-

face component current from IB ( 4> t 'Y) • Figure IV -4 is a plot of the rate of 

volume damage introduction versus neutron fluence. Interestingly, the introduc-

tion rate is accelerated for low fluences at high fields. It should be emphasized 
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TABLE IV-2 Calculated values of K {~,'Y) and K (<1') for matched SA7472 devices at various neutron 
fluences and at differeXt average el~ctric field strengths, E , during irradiation. 

r 

Neutron Fluence Device #79 Device #45 Device #24 
Cf> neutrons/cm2 E = 1. 26 x 105 V /em E = 4. 61 x 106 V /em E = 2. 71 x 106 V /em 

E > 10 keV 
K (cp,y)x10tl 7 K (cp)x10t17 +17 Ky(~)x10H7 H7 

K (lf>)x10H 7 1\,(tP,y )x1 0 Kv(4>,y)x10 v v v 

1.0x1013 170.0 131.0 40.0 31.3 12.0 ----

3.0x 1013 73.6 59.1 24.6 16.3 11.6 ----

5.0 X 1013 50.5 39.2 19.6 12.7 11.0 ----

7, 0 X 1013 39.5 31.1 15.7 10.2 10.4 ----

9. 0 X 1013 33.3 27.0 14.1 9.8 9.7 0.14 

14 
30.1 24.1 9.4 0.50 1. 0 X 10 13.4 9.5 

2.0x1014 18.9 15.7 9.6 7.6 7.7 3.36 

3. 0 X 10 
14 

14.8 12.7 8.2 6.9 6.8 3.70 

4. 0 X 10 
14 

12.6 11.1 7.4 6.4 6. 2 3.90 

6.0x1o14 10.4 9.4 6.6 6.1 5.8 4.30 

8, 0 X 1014 9.3 8.6 6.2 5.8 5.5 4.48 

9. 0 X 10 
14 

8.7 8.1 6.1 5.7 5.4 4.48 

15 
8.6 1. 0 X 10 8.0 6.0 5.6 5.3 4.47 

i 
--- ' 

' I 
! 

"' 01 
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that the data in Figure IV -4 represent only the neutron-induced recombination in 

the emitter-base bulk space-charge region as the neutron-induced recombination 

in the "neutral" bulk base region and the gamma-induced surface components have 

been removed as indicated by equation (ID-1). 

At higher fluences, K is a slowly decreasing function of fluence and con­
v 

tinues to demonstrate a dependence on junction electric field strength (bias) 

during irradiation. This dependence could be attributed to injection annealing 

during irradiation, especially when the device is forward biased. This could 

possibly explain the inconsistency in K for low fluence conditions, but only for 
v 

the forward biased device. If this dependence were indeed due solely to injec-

tion annealing, then the rate of volume damage introduction for the zero bias 

and reverse bias conditions should be identical for all practical purposes. This 

is not the case for the data presented in Figure IV -4 where the K 1 s for the zero 
v 

and reverse biased cases are seen to differ markedly even at very high fluences. 

The current density was computed for the forward biased device (#24-500 m V, 1 ,u.A) 

-2 2 -4 14 
and was found to be on the order of 10 amperes/em (injection ratio--10 ) . 

Therefore, defect annealing caused by injection on the base side of the emitter-

base space-charge region was considered to be non-negligible for the forward 

biased case. However, the behavior at zero and the reverse biases suggests that 

there must exist some other type of mechanism other than injection annealing 

which is responsible for the observed field dependence. 

A plot of the rate of volume damage introduction versus the average total 

junction electric field strength present during irradiation with neutron fluence 
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as a parameter for the specially fabricated matched devices is illustrated in 

Figure IV -5. Note that for higher fl.uence levels, K follows a power law re·­
v 

lationship with junction electric field strength. At lower fl.uences, the magni-

tude of K is larger and is influenced to a greater extent by junction electric 
v 

field strength variations. At higher fluences, K is smaller and is affected 
v 

less by the electric field strength variations and assumes a simple power law 

dependence. An approximate expression for K as a function of neutron fluence 
v 

and junction electric field strength during irradiation has been obtained from 

. 14 5 2 
the data for fluences m the range from 2 x 10 to 1 x 10 neutrons/em 

(E >1 0 ke V) and junction electric field strengths between 10 4 and 10 5 VI em 

having the form 34 

38 

K = K '<1' '-m(E ) 
t";i:;"7 r 

(IV -1) 

where 

v vo ~ 
0 

-17 -3 -2 
K = 4. 48 x 10 (A • em /n · em ) vo 

15 -2 
• = 4. 2 x 1 0 (n • em ) 

0 

m(E ) = [ 0. 648 1n (E/2. 71 x 104)] 2 
r 

E = Junction electric field strength present during 
r irradiation (volts/em). 

The rate of volume damage introduction, K , for the zero bias case is in 
v 

good agreement with previously determined "damage constants" at "normally 

encountered" fl.uences and junction field strengths 8 ' 11 ' 12 ' 15 but is larger for 

the high field strengths at all fl.uences and is much larger for lower fluences. 
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B. Possible Mechanisms for the Field Dependence of the Rate of Volume Damage 
Introduction 

The neutron fluence dependence of K , can be explained from the observed 
v 

variance in the dep'letion layer width, x , since K is expressed as a function of 
m v 

x ; K = K1/x . Since the carrier removal and hence x increases with the 
m v m m 

total neutron fluence (E >10 keV), one would expect K to decrease with neutron 
v 

fluence. 

While the dependence of K on the neutron fluence is easily explained, the 
v 

field dependence of K could be attributed to several possible mechanisms. It 
v 

was noted (Figure IV -4) that the increase in K with the junction field strength 
v 

present during irradiation is much more pronounced at low fluences than it is for 

high fluences. K is observed to decrease with increasing fluence at all levels 
v 

except for the forward bias case at low fluences . This discrepancy from the 

14 
general trend is felt to be caused by injection annealing . Injection annealing 

during irradiation was considered as a possible mechanism for the junction 

electric field dependence, but it alone is unable to predict all of the observations 

since at zero and reverse bias the field dependence is quite pronounced. If in-

jection annealing alone were responsible for the observed field dependence, then 

the reverse biased device should have a smaller rate of damage introduction, 
' 

K , than the unbiased device. The experimental data did not follow this trend 
v 

at all neutron fluences and this was enough to validate a conclusion that some 

other mechanism was responsible. 



www.manaraa.com

41 

8-11 
In Goben's previous work , it was reported that the annealing of 

neutron-induced defects in the high field space-charge region appeared to differ 

markedly from the annealing of defects in the low or zero field neutral base 

region. This suggests that these defects anneal differently due to the presence of 

the p-n junction electric field. In 1967 Chott and Goben13 and in 1968 Suet al. 12 

found that the annealing rate in the space-charge region (as reflected by the 

change in the base current component) was strongly dependent on the electric 

field at the junction during annealing and was attributed to the modification of the 

defect structure and/ or properties of the neutron induced centers. The present 

investigation has shown the field dependence of the rate of volume damage 

introduction K which indicates that the defect cluster or its capture cross 
' v' 

34 
section is modified by the junction electric field 
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V. MOBILITY OF NEUTRON RADIATION INDUCED DEFECTS IN SILICON 
P-N JUNCTIONS 

A. Characteristics of the Si-E Center 

The electrical and optical properties of defects introduced by high energy 

irradiation of semiconductors, particularily silicon and germanium, have been 

41-47 
thoroughly investigated and, although the energy levels are known in 

considerable detail, their identification in terms of structural defects is still 

under investigation. In silicon, a great improvement results from the use of 

electron spin resonance and elasto-plastic effects, which give a clearer picture 

of the association of vacancies with chemical impurities. (The "Si-E center" 

is the phosphorous-vacancy complex, and the "Si-A center" is the oxygen-

vacancy complex.) In the present situation it seems important to investigate 

the motion and disappearance of Si-E centers, which are the dominant complex 

46 47 
defects in irradiated phosphorous doped silicon with low oxygen content. ' 

The Si-E center is formed when a vacancy drifts and is trapped next to a 

phosphorous atom . Because of the unpaired electron of the broken Si bond, 

an electron is captured and the center gets a net negative charge. Figure 

V-1 gives the mode146 of the Si-E center. 

42 

Fig. V-1 Model for the phosphorous-vacancy 
complex, the Si-E center. 
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The mobility of electron and gamma radiation induced point defects in the space--

+ 
charge region of a p-n junction has been demonstrated inn -type germanium by 

Baruch 48 (1961) and in n-type silicon by Saltiel and Baruch 49 (1964). The domi­

nant defect complex in phosphorous-doped float zone silicon was identified46 ' 47 

as the phosphorous-vacancy pair (Si-E center) and was observed to be mobile 

in the presence of an electric field. The energy level of the Si-E center is 

generally observed to be 0. 40 eV below the conduction band (E - 0. 40 eV). 
c 

Saltiel and Baruch 49 have shown that in n-type silicon (phosphorous -doped, 

resistivity 3 ohm-em) the defect velocity is 3. 6x10 - 9 em/sec, corresponding 

to a mobility of defects of 1. 8x10 -l4cm 2;v -sec, and an activation energy of 

motion of (0. 95 ~ . 02 eV). The above coefficients were obtained at a temperature 

of 70°C and a maximum electric field strength of 2.0x105v/cm. 

B. Field Sweeping Experiments and Results 

In order to obtain a better understanding of the mechanism of the formation 

and annealing of fast neutron induced defects in the space charge region, the field 

sweeping of the defects after irradiation was studied. The test devices used were 

+ 
p -n junction diodes (silicon alloy) so that the depletion region extended almost 

entirely into then-region when reverse biased (Hoffman 1N200 and 1N207 diodes). 

14 2 
The devices were irradiated in steps up to 4x10 neutrons/em (E >10 keV). 

Capacitance--voltage measurements before and after irradiation and after field-

sweeping were made using the Micro-Instruments 1201DS Capacitance-Voltage 

Tester. After each irradiation step the devices were reverse biased in steps up 

to 70 volts (somewhat less than the breakdown voltage of the devices) and 
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simultaneously heated in an oil bath to temperatures up to 80° c (the Si-E centers 

are lmown to anneal in the temperature range 100 ° c to 120° C). The oil 

bath consists of an aluminum container fabricated to hold 12 devices in one run. 

Special oils (polymethyl phenyl silicon fluids) were used. Table V -1 lists the 

typical capacitance-voltage reverse bias data obtained for an IN200 p~n diode at 

various stages of field sweeping. 

The observed non-variance in capacitance values (see Table v -1) after 

the field sweeping process indicates that the defect concentration at the edge 

of the depletion layer (at zero and reverse biases) is apparently unchanged after 

field sweeping. It is important to note that the above data were reverse bias 

measurements, and hence will give no indication of the field sweeping of the 

defects in the immediate vicinity of the junction or within the depletion layer. 

Forward bias data is necessary to study the possible field sweeping in the junction 

region. 

16 
Recent investigations by Chow revealed very interesting results from 

forward biased capacitance-voltage data taken from p-n junction diffused tran-

sistors which were irradiated with fast neutrons. Data taken on several devices, 

long periods (over 3 months) after irradiation revealed that the net impurity 

concentration in the vicinity of the junction increased as calculated from forward 

biased capacitance-voltage data, after removal of surface channels and diffusion 

capacitance. This increase was observed on both the p and n sides of the met-

allurgical junction. A possible explanation to this phenomenon could be given 

if one realizes that the average field strength in the junction is appreciable 

enough (E 2 5xl 0 4 VI em) to cause the charged mobile defects to move out of the 
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TABLE V-1 

Field Sweeping Pre-
14 2 

conditions -.. irradiation ~= 1x10 n/em 

Measurement 
Voltage (Reverse) 

(volts) 

O.G 12. 52 12.07 

0.5 9. 57 9. 28 

1.0 8.18 7.95 

2.0 6.70 6.54 

3.0 5. 96 5.77 

5.19 5.06 4. 84 

-

Field sweeping data for device 1N200 f 1. 

14 2 14 2 
~= lx10 n/em q,=lx10 n/em 

0 0 
Temp. at 60 F F.S. at60 C,20V 

14 2 
for 24 hours for 48 hours <P= 4x10 n/em 

12.11 12.12 11.56 

9.29 9.28 8.95 

7.95 7.95 7.72 

6.55 6.55 6,42 

i 
5.78 5.79 l 5.65 

I 
I 

4. 91 4.90 
I 

4.83 I 

i 
I 

-·~~- --- --- -- - - 1_- ~--

14 2 
q,= 4x1 0 n6 em 
Temp.at80 C 
for 48 hours 

11.58 

8.97 

7. 74 

6.4:3 

5.66 

4.83 

- ---

14 2 
rJ>=4x1 0 n/ em 

0 
F. S. at80 C, 70V 
for 64 hours 

11.59 

8,97 

7.73 

6.45 

5.66 

4.89 

~ 
01 
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junction. Since this was observed on both sides of the junction, it can be postu­

lated that at least two oppositely charged mobile defect complexes should exist. 
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VI. SUMMARY AND DISCUSSION 

The first part of this research was the investigation of the electric field 

strength dependence of the rate of surface degradation in specially matched sili­

con planar transistors. It was found possible (for matched devices) to predict 

the gamma-induced surface leakage base current increase. Equation (II-4) is 

the empirical prediction equation for the normalized increase in base leakage 

current as a function of gamma dose (1 x 104 rads (Si) to 2. 0 x 106 rads (Si)) 

and the average junction electric field strength (1 x 10 4 v /em to 2 x 105 v /em) 

at the emitter-base junction during irradiation. The effective minority carrier 

lifetime degradation can be related to the total gamma dose and the junction 

electric field strength given by equation (11-7), and is seen to follow a trend 

similar to (11-4). The rate of surface degradation, as refle~ted by the increase 

47 

in the surface base current component, surface recombination velocity and junction 

capacitance is observed to be an increasing function of the electric field strength 

at the junction during exposure. This can be attributed to the junction fringing 

field dependence of the build up of positive charge and surface states in the Si02 

layer above the space charge region . 

The effect of a mixed spectrum of ionizing gammas and fast neutrons on 

transistor parameters was investigated. Surface effects caused by ionizing gamma 

radiation are a primary cause of damage at low neutron fluences for the swimming 

pool reactor used in these experiments. This is reflected by the initial increase 

in junction capacitance and the surface base current component. The gamma 

14 
induced increase in junction capacitance (caused by surface channels) at 1 x 10 



www.manaraa.com

48 

2 6 
neutrons/ em (which corresponds to a gamma dose of 1 x 10 rads (Si) had to be 

subtracted from the total junction capacitance to obtain the net decrease in 

capacitance caused by fast neutrons alone. The surface recombination base current 

induced by the ionizing gamma dose and the neutron-induced base bulk current 

component had to be subtracted from the total observed increase in the base 

current before meaningful space-charge volume damage introduction rates could 

be calculated. 

In an effort to explain the anomalous behavior of the neutron-induced defect 

clusters in the silicon p-n junction space charge region, the dependence of neutron 

fluence and junction electric field strength present during neutron irradiation was 

examined. Experimental data from matched SA7472 silicon planar transistors 

indicate that K is a decreasing function of neutron fluence, as would be expected 
v 

since x is found to be an increasing function of fluence. K is also seen to be 
m v 

dependent on the junction electric field strength present during irradiation. The 

neutron induced recombination is much more pronounced for the higher junction 

electric field strengths present during irradiation for low fluences. From an 

analysis of the data presented in Figure IV -4, it is clear that the rate of volume 

damage introduction varies with the electric field strength present during neutron 

irradiation for all neutron fluences. It is noted that the increase in K with the 
v 

junction field strength present during irradiation is much more pronounced at low 

fluences than it is for high fluences. K decreased with increasing fluence at all 
v 

neutron fluences except for the forward biased case at low fluences. This dis-

crepancy from the general trend was felt to be caused by injection annealing. 

' 
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Injection annealing during irradiation was considered as a possible explanation 

for the junction electric field dependence but it alone was unable to predict all 

of the observations (zero and reverse bias cases). This was sufficient to con-

elude that some other mechanism was responsible for the observed damage 

introduction rate. The exact nature of the field dependence (whether the defect 

cluster or its capture cross section is modified by the junction electric field) 

could not be determined and further work in this area is needed (see Section VITI) . 

The rate of space-charge region volume damage introduction was experimentally 

determined and found to be a function of both neutron fl.uence and the junction 

electric field strength present during irradiation rather than a constant, as 

thought earlier. An empirical expression was developed for K from data taken 
v 

on specially fabricated devices. This expression gives reasonable predictions 

for fl.uences between 2 x 1014 and 1 x 1015 neutrons/cm2 (E > 10 keV) and junction 

electric field strengths between 104 and 105 V /em (ranges of fl.uences and fields 

were surface effects and injection annealing can be considered negligible or sub-

tracted with reasonable accuracy for the type of devices tested) . 

The drift mobility of neutron induced Si-E centers in the p-n jrmction 

devices was investigated. From reverse bias capacitance-voltage data obtained, 

no apparent mobility of the Si-E center could be observed. Forward bias measure­

ments made by Chow 16 have indicated an increase in the net impurity concentration 

near the vicinity of the junction for diffused transistors. This could be attributed 

to the field sweeping of the defects by the high field in the space charge region. 
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VII. CONCLUSIONS 

This research has shown that the rate of bulk and surface damage intro-

duction is dependent on the electric field strength through the bias applied to 

the device jrmctions during irradiation. In general, the rate of volume damage 

introduction, K , and surface degradation are seen to be an increasing function v 

of the average electric field strength present during irradiation. At the present 

stage of development of this research the following specific conclusions can be 

made. 

(1) The ionizing gamma dose induced surface degradation (as reflected by the 

increase in the surface base current component surface recombination velocity 

and jrmction capacitance) is observed to be an increasing function of the electric 

field strength at the junction during irradiation. For specially matched, oxide 

passivated silicon transistors, an empirical prediction equation of the form 

(VII -1) 

has been obtained correlating the normalized increase in the surface base current 

component with the total gamma dose and the average junction electric field 

strength during irradiation. The empirical equation correlating the reciprocal 

minority carrier lifetime with the junction electric field strength and the gamma 

dose is 

(VII-2) 

(2) The ionizing radiation induced surface effects are non-negligible at low 

neutron fluences in the swimming pool type reactor used in the present investi-

gation. The gamma induced surface channel component of capacitance and 
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surface recombination base current component must be subtracted from the total 

observed changes in capacitance and base current values, respectively, to obtain 

meaningful interpretation of the fast neutron induced parameter changes. Methods 

for doing this are presented. 

(3) The rate of space-charge volume damage introduction, K , is found to be an 
v 

increasing function of the average junction electric field strength and a decreas-

ing function of the neutron fluence. An empirical equation of the form 

K = K 
(VII-3) 

v vo 

correlating K with the field strength and neutron fluence has been developed, 
v 

14 15 
which gives reasonable predictions for fluences between 2 x 10 and 1 x 10 

2 4 
(neutrons/em , E >10 keV) and junction electric field strengths between 10 and 

5 
10 V/cm. 
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Vffi. FURTHER RESEARCH PROPOSED IN THESE AREAS 

A. Surface Damage Studies 

It is suggested that the present work in surface damage studies be extended 

to obtain a better understanding of the phenomenon involved. Work should 

be done in this direction and is briefly described below. 

Empirical equations have been derived (Chapter II) which predict the 

increase in the normalized surface base current component and the surface 

recombination lifetime for minority ca:rrfers from studies of gamma irradiation 

on matched oxide passivated silicon transistors. These parameters have been 

observed to depend on the average junction electric field strength present during 

exposure and the total gamma dose. Similar studies should be performed on groups 

of unmatched devices. The search for a technique to predict surface degradation 

should be restricted to silicon devices with Si02 passivation, so that a basic 

theory for determining prediction techniques can be developed. Such a basic 

theory should point the way to more general techniques. Since the accumulation 

of surface states depends on initial conditions at the junction-SiO 2 interface, 

proper normalization techniques are essential for predicting transistor surface 

response to ionizing radiation. 

The build up of positive charge in the Si02 passivation layer causes de­

pletion and inversion in p-type semiconductor material and accumulation in 

n-type material. Hence, in a silicon n-p-n transistor the positive charge build 

up in the SiO layer will cause depletion or inversion at both junct:ins in the 
2 

p-type material. The impurity concentration in the immediate vicinity of the 
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junction at the surface and the applied junction bias determine the extent of 

depletion or inversion of the surface. Use of irradiation data on devices with 

the same surface concentrations and equivalent junction electric field strengths 

but with different surface areas should be irradiated to determine the area de-

pendence of surface degradation. Devices with identical surface areas and 

equivalent junction electric field strengths but varying surface concentrations 

should be examined to determine their effect on ionizing radiation induced 

change in transistor parameters. Special gates diodes should be used to 

study the effect of gate bias on build up of positive charge in the oxide layer. 

A set of special n-channel and p·-channel MOSFET's fabricated from the same 

silicon wafers should be obtained in order to facilitate the investigation of 

gamma-induced fast and slow surface states, channel conductance, surface 

inversion and noise problems. Such an investigation should lead to a successful 

prediction technique for the general case of unmatched devices operating in 

an ionizing radiation environment. 

B. Space Charge Region Damage Studies 

It is suggested that the present work in bulk space-charge damage studies 

to extended to obtain a better understanding of the phenomenon involved. 

The anomalous behavior of neutron-induced defect clusters in the high 

field space-charge region, both during introduction and annealing has been 

53 

shown to be dependent on the electric field strength in the junction, although no 

physical mechanism has yet been postulated. However, the nature of the defect 

clusters in bulk semiconductor materials has been characterized quite well. 28 - 31 

Investigations of the neutron-induced defect structure in bulk semiconductors 
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have led to the postulation of a spherical low-density region of disorder surrounded 

. 29 . 29 30 
by a space-charge regwn GossiCk and Cleland and Crawford visualize 

this region as being depleted of charge carriers and acting essentially as an 

insulating void (defined by the screening distance in the medium), thereby 

limiting the local current flow. Gossick29 alludes to a consideration of a 

change in the dielectric constant in his original work. The application of the 

Clausius-Mosotti determination for the relative dielectric constant gives the 

relation: 

= t 0 l 3/(1-f)- 2 l 
where f is the volume of voids as given by: 

411" 3 
f = -- r f x Number Density, 

3 e f 

and the increase in fin the space charge region would be reflected by the increase 

in E • If this simple model for the polarizability applies, then a measurement 

of the dielectric constant should provide a sensitive means for determing the 

effect of the field on the formation of disordered regions and provide a better 

understanding of the field dependence of neutron induced defect clusters. 
31 

Bertolotti 

was able to photograph replicas of the defect regions in bulk semiconductor material 

and has shown that the neutron induced defects in his experimental samples were 

indeed spherical, as predicted by the Gossick model. The disordered region, 

which contains up to 105 atoms, has a radius of 150 to 200 A . The screening 

distance of the space -charge region surrounding the disordered region should be 

greater than a Debye-Huckellength in the undistrubed lattice and may be written 

as 

L = (.!_) • tTE )1/2 
D q N ' 
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where N is the carrier concentration, E is the dielectric constant of the material 

and q, K and T have their usual meanings. In high resistivity material, L 
D 

is several orders of magnitude greater than the inner radius and the size of the 

potential well will be dependent on the outer space-charge region. 

It is proposed to extend the work of Bertolotti31 to an investigation of the 

defect cluster and the nature of its geometry within the depletion region of a 

p-n junction. Moreover, a technique for examining the cluster formation by 

50 
using the "contrasts" technique has been developed. This technique, in con-

junction with the Scanning Electron Microscope (SEM), should allow the investi-

gator to examine clusters in sectioned samples without the complicating step of 

replication. 

These investigations should lead to a better understanding of the nature 

of the defect cluster in the high field space-charge region of a p-n junction. 
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APPENDIX A: AUTOMATIC DATA ACQUISITION SYSTEM AND DATA 

REDUCTION TECHNIQUES 

1. General Description 

AI 

An Automatic Data Acquisition SystemA1 was used for the measurement 

and recording of the voltage versus current characteristics of the test devices. 

The system is capable of current and voltage measurement with an overall ab­

solute accuracy of ± 0. 3% of reading in the range from 10 -I 0 amperes to 

-1 
2 x 10 amperes (over 9 decades). Figure A-1 shows a block diagram of the 

complete Data Acquisition System plus the additional facilities necessary for 

obtaining the V /I Characteristics. Figure A-1 also indicates the flow paths 

for data and control information between the various equipments. Figure A-2 

is a photograph of the system as its operation is initiated. 

The heart of this system is a Control CenterA2 ' A3 which controls the 

programming, measurement and recording sequence of the system. A signal 

. A2 A3 
IS sent to the Programmer ' to program the John Fluke 383B Voltage-

Current Calibrator which applies an emitter-base bias to the test device which 

is mounted in a sample holder (see Figure A-3) contained within a Delta Design 

MK2310 Temperature Control Chamber. The collector-base bias is supplied 

by a manually controlled Harrison Labs 865C Power Supply or a digitally con-

trolled John Fluke 383B Voltage/Current Calibrator. The currents are sampled 

by the Current SamplerA2 , A3 whose output is amplified by a low noise Sanborn 

Type 860-4300 amplifier and measured by a Dymec 2401C-M31 Digital Volt-
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Figure A-1. Block diagram of the Automatic Data Acquisition System. 
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Figure A-2. Photograph of initiation of the system for a typical data run. 

~ 
w 
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Figure A-3. Photograph of sample holder in its mounting, 
the heat sink standing behind the devices. 

A4 
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meter. The emitter-base bias voltage is measured by a second Dymec 2401C-

M31 Digital Voltmeter. The voltmeter readings are recorded along with resistor 

identification information in digital form supplied by the Autoranging Current 

S 1 A 2 ' A 3 Th" . f t· . · 1· d b amp er • ISm orma wn IS sena 1ze y a Dymec 2540B Coupler and 

recorded on a Friden Model SFD Flexowriter in both type-written form and on 

punched paper tape. The punched paper tape is converted to IBM punched cards 

on an IBM 047 Tape-to-Card Converter, and the punched cards are processed 

by an IBM 360-50 Digital Computer. The computer output is the tabulated val-

tage versus current characteristics and a plot (Calcomp Model 566) of the 

tabulated values. 

A program has been written for the processing of the output data from 

the Automatic Data Acquisition System by the IBM 360-50 Computer. This pro-

gram performs four major functions. 

First, computation is made of device voltages and currents from the 

input voltage and resistance data with corrections made for the voltage drop 

across the current sampling element. 

Second, interpolation is made to values of emitter-base voltage which 

are integral multiples of 10.0 millivolts. This interpolation provides a means 

of comparing currents and current gains at fixed values of base-emitter voltage. 

Third, the applied base-emitter voltage versus base and collector cur-

rents and current gain is provided in tabular form together with heading 

information which includes device identification and measurement conditions. 
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Fourth, a machine plot (Calcomp Model 566) of input voltage versus 

logarithm of base current and logarithm of collector current, with printed 

device identification and neutron fluence, is returned for use by the investigator 

in comparison studies. Each plotted page is a 14 x 10 inch graph of the form 

log (I) versus V BE. This particular program turns a plot of the logarithms of 

IB and IC versus V BE for each device. A second plot program is available and 

returns one plotted page depicting either log (I ) or log (I ) versus V curves 
C B BE 

for as many devices as desired. 

The run time for the first plot program is approximately two and one-

half minutes per device and the run time for the second plot program is 

approximately one minute per device. 

The test device is located in the Sample Holder, as shown at the top of 

Figure A-1 which is, in turn, inside the Delta Design MK2300 Temperature 

Control Chamber. The MK2300 is a precision environmental temperature test 

0 0 
chamber capable of maintaining any temperature from -297 F (-196 C) to 

0 0 0 
600 F (+315. 6 C) within ~ 0. 1 C. The forced air circulation system is closed 

and powered by a 140 CFM blower. The chamber is heated by applying full 

wave power to a pair of bobbin wound nichrome 720 watt heating elements con-

trolled by the "heat" solid state switch. It has been suitably modified to be 

cooled by injecting liquid co2 or liquid N2 into the air stream through an ex-

pans ion nozzle controlled by the "cool" solid state switch. 

Comparing the resistance of a temperature probe to the resistance of 

a "Temperature Set" potentiometer, the controller senses when to apply heat, 
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coolant, or withhold both so as to obtain and maintain a selected temperature in 

the chamber. 

2. Cyclic Operation 

The data for the base current versus voltage characteristic and collector 

current versus voltage characteristic is obtained with the device in, respec­

tively, the Base Current Measurement Circuit shown schematically in Figure 

A-4, and the Collector Current Measurement Circuit shown schematically in 

Figure A-5. The Sampling Resistance appears in the measurement circuit as 

a physical resistance having one of nine discrete values, ranging from 17 mil­

liohms to one megohm, each approximately a decade apart from the next. The 

Sampling Resistance is determined by the parallel combination of all resistors 

which are in the measurement circuit after the autoranging procedure is per­

formed. The value of the Sampling Resistance as shown in Figure A-6 is, 

therefore, 17 milliohms. 

The system is designed to perform a particular sequence of events in 

obtaining test data from a semiconductor device. In simplified terms, the 

sequence of events for one typical cycle of the system is as follows: 

1. With the test device initially in the Base Current Measurement 

Circuit (Figure A-4) and with a particular value of base-emitter 

bias and collector supply voltage applied to the device, the system 

autoranges selecting one of the nine possible values of the Sampling 

Resistance such that the voltage drop across the Sampling Resis-
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Figure A-4. Base current measurement circuit. 
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Figure A-5. Collector current measurement circuit. 
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tance is normally greater than 0. 5 millivolts and less than 5 milli-

volts. This autoranging procedure has been explained in detail in 

reference A2. 

2. The digital voltmeters encode and their readings are recorded. 

3. The device is switched into the Collector Current Measurement 

Circuit (Figure A-5). 

4. The two digital voltmeters again encode and their readings are re-

corded. 

5. The device is switched back into the Base Current Measurement 

Circuit (Figure A-4). 

6. A new value of base-emitter bias, V BE, is applied to the device and 

the sequence is repeated. 

These steps define one cycle of the system. The system continues cy-

cling in this manner until all of the required pre-programmed values of V BE 

(59 values of V BE are available if needed) have been used. 

The collector supply voltage, V CC, can be set manually before a test 

run in which case it remains constant during that test run, or a series of vol-

tages can be programmed for a test run. In this second case, the emitter supply 

voltage, V , is usually held constant. 
BE 

An additional method of operation allows one to measure base current 

only or collector current only. This method of operation is selected by the 

MODE switch on the front panel of the control center. 
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A new feature of the system is the addition of an automatic stepping 

switch to allow taking data simultaneously on 12 devices in one data run. An 

interface is currently being designed and constructed which will allow the 

All 

system to be controlled by a Digital Equipment Corporation PDP-8/I Programmed 

Data Processor. Controlling the system in this manner will provide more flex­

ible system operation and enable some on-line data reduction. Recently, a 

switch has been installed which facilitates the application of a forward bias or 

reverse bias at the collector-base contacts for then -p -n and p-n-p configura­

tions. This allows for obtaining current versus voltage characteristics for both 

bipolar and MOSFET devices, with the system. 
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APPENDIX B: CAPACITANCE-VOLTAGE MEASURING SYSTEMS 

Two systems were used for the measurement and recording of capaci­

Bl 
tance versus voltage data . The alternative capacitance measuring systems 

use a Micro-Instruments Model 1201DS Digital Capacitance Tester as the basic 

measuring instrument. A Dymec 2901A Master Scanner /Programmer and a 

Dymec 2902A Slave Scanner /Programmer are used for control and programming. 

The Dymec 2901A Master Scanner /Programmer and the Dymec 2902A Slave 

Scanner /Programmer are electronically controlled stepping switches which 

provide automatic scanning of 25 signal inputs each. The test devices in the al-

ternative systems are mounted in a Delta Design MK2310 Temperature Control 

Chamber (see Appendix A). 

The digital Capacitance Tester is a direct reading high speed instrument 

for accurate capacitance measurements. A guarded two terminal test jig is 

permanently attached to the front panel of the instrument. This test jig is 

guarded with a signal similar to the test signal to neutralize the capacitance 

effects of the component leads; thus, the instrument measures direct capacitance 

rather than grounded capacitance. Three BNC coaxial connectors for remote 

or special test jigs are provided on the front panel. The connectors provide for 

a test signal, a guard signal and a return for use with remote or special jigs. 

The Coarse Zero Control may be used to neutralize up to 100 pF of capacitance 

added by the cable and jig. 
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A digital output connector is provided on the Digital Capacitance Tester. 

This connector provides a print command signal as well as digital information 

to operate the Hewlett-Packard R66-562AR Digital Recorder. The recorder is 

controlled by means of a "Print" switch located on the front panel of the instru­

ment. The output is BCD 1248 logic. 

In the first alternative capacitance measuring system, a start command 

advances the scanner /programmer which digitally programs a voltage or cur­

rent on a John Fluke 383B Voltage/Current Calibrator. This voltage or current 

is applied to the device under test. A capacitance reading is taken by a Micro 

Instrument Digital Capacitance Tester 1201DS and recorded on a Hewlett­

Packard R66-562AR Digital Recorder together with the applied voltage which is 

measured b.v a Dymec 2401C-M31 Digital Voltmeter. The printed record is 

punched on IBM cards and processed by the IBM 360-50 Digital Computer. The 

block diagram for the system is shown in Figure B-1. 

Alternatively, when the Automatic Data Acquisition System described in 

Appendix A is not in use for voltage-current measurements, the Dymec 2401C­

M31 Digital Voltmeters, Dymec 2540B Coupler and Friden SFD Flexowriter may 

be used as the output medium. For this mode of operation the frequency output 

(proportional to capacitance) of the Micro-Instruments 1201DS Capacitance 

Bridge is measured by one of the DVM' s in the Automatic Data Acquisition 

System while the other DVM measures the potential applied to the device under 

test. This information is then serialized by the Dymec 2540B Coupler and then 

printed as output by the Friden SFD Flexowriter on both punched paper tape and 
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and typewritten copy. Data processing is accomplished in a similar manner to 

that described for the Automatic Data Acquisition System. The block diagram of 

the alternative system for the capacitance-voltage measurements is shown in 

Figure B-2. 

To facilitate the inter-connection of the Automatic Data Acquisition Sys­

tem and the Capacitance-Voltage System for this alternative mode of operation, 

a single cable was constructed carrying all data, control and signal lines. When 

the two systems are used separately, shorting plugs are placed over the chassis 

connectors on the two systems. 

This system will also be interfaced to the PDP - 8/1 Programmed Data 

Processor to provide increased system flexibility and on line data processing. 
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APPENDIX C: :MINORITY CARRIER LIFETIME MEASUREMENT 

1. Reverse Recovery Characteristics of Diodes 

When a diode is switched from conduction in a forward bias to a reverse 

bias condition, instead of a high impedance immediately appearing across the 

diode, a momentary low impedance, which is indicated by a very low voltage 

across the diode, immediately occurs after the switching. This is due to the 

storage of minority carriers in the semiconductor material. 

As the junction is suddenly reverse biased the excess minority carriers 

must either be swept out of the junction or recombine with excess majority car-

riers before a high reverse impedance can be obtained. 

A typical display of diode reverse recovery characteristics is shown 

in Figure C-1. In Figure C-1, there are three areas of particular interest. 

!77 
~ 

v 
,_. - B -:; ~ v 

h-

T / 
A. 1/ 

-~ 

t 

Figure C-1. Typical display of diode reverse recovery character­
istics. 

These areas are designated by A, B and C. The sudden voltage drop at area A 
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occurs at the time when forward conduction ceases. During forward conduction, 

this voltage drop is produced by the internal series resistance across the diode Cl. 

When forward current is cut off, this voltage drop disappears, producing the 

voltage step. Immediately after the sudden drop at area A the voltage decays 

exponentially for a relatively long period of time (area B). During this interval, 

minority carriers in the semiconductor material are being swept out by the 

reverse current. The length of time required for the reverse current to remove 

the minority carriers gives an indication of the amount of charge stored in the 

material. The stored charge is found to be proportional to the forward current 

passing through the junction just before the diode is switched off. If zero re­

verse current is drawn from the diode, the voltage decay is due entirely to the 

recombination of minority carriers. By measuring the rate at which the volt-

age across the diode decays for this case, the effective lifetime can be found. 

When the minority carriers in the semiconductor material have either 

been swept out or have recombined, the depletion region increases at the junc­

tion due to the movement of the majority carriers away from the junction. 

Further reverse current is then required to charge the capacitance of this 

depletion region (area C). This accounts for the rise in voltage across the 

junction. The junction capacitance is also dependent on the voltage. The 

capacitance does not remain constant, but varies with the voltage across the 

junction. 

2. The Effective Lifetime of Minority Carriers 

During the period of forward current conduction, excess minority 

carriers are injected into the semiconductor material. These excess minority 
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carriers are in addition to the fixed number of minority carriers present re-

suiting from thermal generation of electron-hole pairs. The effective lifetime 

of these excess minority carriers is the time required for the number of the 

minority carriers to decrease to 36.7% (1/e) of the original number after ter-

mination of the forward current. The effective lifetime expresses the relative 

rate at which the minority carriers recombine and is a constant for a given 

diode at a particular absolute temperature and biasing scheme. In general, 

it does not depend on either the forward or the reverse current drawn from 

the diode unless neutron induced defects are present. Effective lifetimes 

should be specified with the temperature at which the measurements were 

made. 

When the measured time (t) is small compared to the effective lifetimes 

and where kT/q is much smaller than the voltage across the diode, the 

Cl 
approximation for the effective lifetime shown below holds : 

At room temperature, equation (C-1) becomes 

0 0.026 
T (300 K) ~ (.iV I ~t) 

(C-1) 

(C-2) 

In equation (C-1), it is assumed that t is small compared toT . This 

means that the decay rate of the voltage across the junction should be measured 

just after the forward current is switched off. Mathematically stated, 6.V I 6.t 

should be measured as t-- t where t is the time when the forward current is 
o' o 

C3 

switched off. The assumption that kT/q is much smaller than the voltage across 
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the diode also holds quite generally as t ~ t
0

• Therefore, equation (C-2) 

should be rewritten as: 

C4 

o. 026 

(6V/At) It 
~ t 

0 

(C-3) 

Figure C-2 shows a typical waveform used to measure the effective life­

time of minority carriers. The Tektronix Oscilloscope Type 555C2 with the 

Tektronix Type S Recovery-time plug-in Unit C3 is used for the measurements. 

/ v """'" ..,...., 
/ v L_ ./ 

AV v /. v 
Figure C-2. Tangent line for calculating the voltage decay rate across 

the diode. 

The wave forms used to measure the effective minority carrier lifetime 

were photographed by a Tektronix Type 100 camera with a Polariod back. 

Figure C-3 shows two typical pictures which are used to illustrate the decrease 

in minority carrier lifetimes. 

3. Minority Carrier Lifetimes in the Space-Charge and Bulk Regions of a 

Junction Transistor 

For measuring the lifetimes of a transistor, both the emitter-base and 

collector-base junctions are treated as diodes. Using the method described 
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Figure C-3. 

cs 

~ = 0 

T ==' 
0.026 

(0.05).(0.6) 
(0.1). (1.6) 

==' 139.2 ns 

(at 300°K) 

13 
~ = 3 X 10 nvt 

0.026 
(0.05).(0.4) 
(0.1). (0.2) 

==' 26 ns 

Photographs from which measurements of TBE at 
two different fluences are made. 
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above, the values of T and T for the emitter-base and collector-base 
BE BC 

junction lifetimes respectively are calculated. The minority carrier lifetimes 

in the base and collector regions are T B and T C, respectively, and are related 

to T BE and "T' BC according to: 

1/"T' B + 1/TC = 1/"T' BC' (C-4) 

and, (C-5) 

or, 7 BE' 
(C-6) 

(C-7) 

Some difficulty was experienced in fitting the tangent line to the wave-

forms of low lifetime devices (heavily gold doped or highly irradiated transistors) 

because of the presence of considerable noise immediately after forward con-

duction was switched off. This was resolved by assuming that the complete 

waveform could be accurately described by a simple exponential function. The 

exponential function was fitted from data in the noise free regions and then the 

zero point tangent computed. 
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APPENDIX D: NUCLEAR REACTOR FACILITY AND DOSIMETRY 

1. Nuclear Reactor Facility 

The neutron irradiations for this investigation were performed at the 

Research Reactor of the University of Missouri - Rolla. This reactor is used both 

for laboratory training and research by the faculty and students of the University 

of Missouri - Rolla and other nearby universities. A table of the major reactor 

characteristics of the Research Reactor of the University of Missouri - Rolla is 

illustrated in Figure D-1. 

The Research Reactor of the University of Missouri- Rolla is a "swimming 

pool" type reactor, installed in a windowless, concrete, brick and steel structure. 

The pool consists of a thick walled pit, 19 feet long, 9 feet wide and 27 feet deep, 

containing 32,000 gallons of pure water. The reactor core is suspended near the 

bottom of the pool and is covered with some 19 feet of shielding water. The water 

is continuously purified by an ion exchanger, which removes cations and anions, 

preventing corrosion and contamination. 

The reactor grid plate, containing several rows of fuel pin holes and 22 

fuel elements, is a racklike aluminum tray. Open positions in the grid plate are 

available as sample holders in experiments. Position B2, (see Figure D-2) which 

is mapped for fast flux irradiations, was used in this investigation. The maximum 

10 
fast flux (E > 0. 01MeV) available at 10 kW for position B2 is 8. 48 x 10 neutrons/ 

cm2 -sec. The gamma to fast neutron ratio is approximately 1. 1 x 10-8 rad (Si)/ 

-2 D1 
n • em 
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Type-----------------------------: Swimming pool type (modified BSR-type), housed in a windowless, 
concrete, brick and steel structure. 

Core -----------------------------: Heterogeneous 90% U-235 enriched uranium oxide-Aluminum-water. 

Moderator ------------------------: Light water. 

Reflector --·----------------------: Light water. 

Coolant --------------------------: Light water. 

Biological shield ----------------: Light water and normal concrete. 

Critical mass--------------------: Approximately 2.7 kilograms of U-235. 

Power level ----------------------: Up to 200 kw. 

Maximum thermal flux-------------· 12 2 
1.5 x 10 neutrons/em -sec. 

11 2 Maximum fast flux (E > 10 keV) ---: 2.25 x 10 neutrons/em -sec. 

Fuel elements 

Auxiliary equipment 

MTR type; each fuel element has 10 fuel plates, each plate approxi­
mately 17 gms of U-235. Each fuel element is 3"x 3"x 36". The 
reactor has 22 full fuel elements: 1 left hand half elements, 2 
right hand half elements, and 4 control rod elements(3 shim-safety 
rod, 1 regulating rod). 

Neutron diffraction multi-channel analyzer, nuclear counting equip­
ment; neutron generator, subcritical assembly, neutron chopper. 

Figure D-1. Table of technical data for the UMR Research Reactor. 

t:J 
"-> 
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A photograph of the sample holder which was used to contain the transistors 

in all of the irradiations is shown in Figure D- 3. 

2. Foil Activation Analysis for Neutron Fluence Determination 

a) Nickel Foil Activation 

Determination of neutron fluence during each irradiation run is important 

for radiation damage studies and has to be accurately ascertained. The approximate 

desired fast neutron fluence level can be obtained from previously calibrated 

ti.Jn3-fluence curves at different reactor power levels of the reactor. However' 

because of fuel depletion and flux pattern variations in the reactor core with time, 

it is essential to determine the exact fast neutron fluence for each irradiation. 

The fundamental problem in prior fast neutron spectrum measurements is 

that much of the fast neutron energy spectrum lies below the threshold reactions 

in materials. Careful attention was focused on relations in the keV and MeV range 

for this purpose. The desirable criteria for a threshold detector such as nickel 

are as follows: The effective threshold of the materials must be from 0. 1 MeV 

to 15 MeV and sensitive to fast neutrons only. The product should decay to pro-

duce a prominent peak which is easily identified between 0 and 2 Mev. It should 

be formed in sufficient quantity to allow for reasonable detection statistics. The 

half life of the product nucleus should be of the order of hours or days. A half 

life of this order will emit enough radiation for good detection in reasonable acti-

vation time. Nickel conforms to the above criteria and is ideal in determining flux 

58 58 · · f · t t Th. in the energy range of interest. Ni (n,p) Co 1s the reaction o meres . 1s 

threshold reaction has an effective threshold of 2. 9 Mev. The effective activation 
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cross-section is 0. 42 barns. The daughter, Co 58 , decays with a half life of 71 • 3 

days. The Ni used in the present investigations is 99. 9979[ pure, obtained from 

Reactor Expt., Inc. 

b) Table of Nuclear Reactions 

Reaction Half Cross Section 
Reaction ~Peak (MeV) Energy (MeV) Life {millibarns} 

.58 58 
N1 (n, p) Co 0.81 2.9 72d 92 

N.58 ( ) C 58n 1 n,p o 0.81 4.1 9.2h 10 

.58 .57 
N1 (n, 2n) N1 1. 37' 1,87 11.7 36h 0.0012 

.60 60 
N1 (n, p) Co 1. 17' 1. 33 2.07 5.24y 3.5 

61 61 
Ni (n, p) Co 0.068 5.41 1. 65h 

.62 59 
N1 (n,O!) Fe 1.13, 1.28 0.884 45.1d o. 014 

N.62 ( ) C 62 1 n,p o 1. 17' 1.47 8.92 13. 9m 

c) Spectrum Analysis 

58 . .58 
The Co obtamed from N1 (n,p) reaction may be detected free from 

interference by other reactions produced by neutrons on nickel. This product 

has a gamma photopeak at 0. 81 Mev and threshold reaction at 2. 9 Mev. The 

58 57 58 
long half life of Co (72 days) allows for Ni and Co to be eliminated allowing 

a few half lives of decay. The long half life (5. 24 years) plus the low cross section 

of the Ni60 (n,p) reaction eliminates interference from Co60. Co 58 obtained 

from Ni58 (n,p) reaction may be detected free from interference by all other 

activities produced by neutrons on nickel. However, interference due to the 

Co 60 formed from thermal capture by Co 58 may be troublesome for long irradia-

58 
tions and large fluxes. It was noted that Co has a thermal burnout of 1% for 
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thermal fluxes greater than 1015 neutrons/em 2 D 2 
-sec. Hogg, Weber and Leats 

have shown that the isomeric state of Co 58 has an extremely large cross section 

of 178,000 barns and therefore must be guarded against and corrected forD 3 . 

However, the UMR reactor has a thermal flux around 2. 5x1 o12 , and this pheno-

menan need not be emphasized. Furthermore, the Ni foils were Cd covered as 

a precaution. 

d) Cormting Technique 

The nickel foils used are one-half inch in diameter and approximately 

0. 003" thick, weighing about 0. 086 gms. After irradiation, the foils are allowed 

to cool for about 30 hours, in order to allow the decay of short-lived isotopes, 

so that they will not interfere with the 0. 81 Mev peak obtained for the 71.3 day 

58 
half life of Co . The foil-induced activity was determined by counting the gamma 

emission with dual right angle cylindrical 3"x3" sodium iodide thallium 

activated crystals in conjunction with a 400 channel analyzer. The crystals are 

adjusted so that they could be closed tightly on the foil to give a 4 "counting 

geometry. The crystals are located in a lead shield counting chamber in the 

reactor bay. The multi-channel analyzer is calibrated quantitatively, using 

known standards Cs-137, Rd-226 and Co-60. The photopeaks from the foil are 

then located by channel. The above settings are counted for 1/16 setting corres-

ponding to 0 - 4 MeV range. The calibration chart is shown in Fig. D-4. The 

background counts for each channel are taken and subtracted from the observed 

counts for each channel. [Note: The background count is known to change with 

the reactor operating at different power levels. ] The total counts vs. channel 
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number for a certain counting period are plotted. The area rmder the o. 81 Mev 

photopeak is then determined. The empirical relation for the flue nee (n/ em 2) 

for energies >10keV can then be directly given by the formulaD4 : 

10 
<I> = 1. 325 X 10 x A 

Wt x T 3 (1 - )\ T 2) 

where, <I> = neutron fluence (time-integrated flux), in neutrons/cm2 

A = area rmder 0. 81 Mev peak, corrected after subtracting 
backgrormd 

Wt = weight of foils being irradiated, gms 

T 2 = time to count (cooling time), hrs 

T = counting time, minutes 
3 

58 -4 -1 = decay constant for Co = 4. 07 x 10 hr 

The 0. 81 Mev peak occurs on channel #81 in the 0 - 4 Mev range. 

e) RIDL Model 34-12B Transistorized 400-Channel Analyzer 

The RIDL Model 10-8 Scintillation Probe is a convenient detector-

preamplifier combination assembly built into a cylindrical container. The 

housing includes a crystal holder at one end, a photomultiplier tube at the 

center, and a built-in two-transistor preamplifier at the opposite end. 

A 1. 75" sodium iodide thallium-activated crystal was used with the scin-

tillation probe. 

3. Irradiation Problems 

The transistors used in this neutron radiation effects study were irradiated 

in a double-walled aluminum sample holder having the inner space filled with boron 
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carbide. The boron carbide shield is needed to allow only fast neutrons (E > 10 

keV) to bombard the devices. Boron carbide has a high capture cross section 

for slow neutrons. 

The aluminum used in the fabrication of the sample holder contained 

impurities whose radioactive half life was long compared with aluminum. As 

a result, the sample holder could not be removed from the pool until this radio­

active decay decreased to a point which was considered safe by the reactor 

personnel. A cadmium cylinder was used to shield the sample holder from the 

thermal neutrons causing this activation. This allowed the samples to be removed 

from the pool on the day they were irradiated. At higher reactor power levels, 

the temperature inside the sample chamber would tend to increase, requiring 

a flow of nitrogen through the sample chamber during irradiation to cool the 

devices. This coolant was necessary to insure that annealing did not take place 

during irradiation. 
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APPENDIX E: COBALT 60 IRRADIATION FACILITY AND DOSIMETHY 

1. Cobalt-60 Facility 

The Cobalt-60 gamma facility, at the University of Missouri Columbia 

E1 

is housed below grade level in a 16 -foot deep pool of demineralized water. The 

source is comprised of ten stainless steel clad cylinders of Cobalt each measuring 

11.52 inches long and 0. 44 inches in diameter. The capsules are equally spaced 

around the circumference of a right circular cylinder having an inner diameter 

of 5. 53 inches. The support cylinder has an outside diameter of 7. 5 inches and 

a height of 12.3 inches. The original source strength was 5650 curies on 

November 12, 1965 and delivered an in-air gamma dose of 6, 563 (~ 5r;) rads/ 

min. at 1 meter. Fig. E-1 gives the exponential decay patterns for the source. 

The curie strength and the dose rate in rads/hour at 1 Meter (in air) are plotted 

versus the time in years. 

The source may be utilized for irradiations in air or in water. The 

facility is equipped with a chain-drive elevator system that moves the source 

from the pool into the gamma irradiation room with a transit time of 1 minute 

and 39 seconds. The control panel for the elevator system is located on the 

wall outside the irradiation room maze. A safety interlock on the elevator 

system allows entrance to the room only when the source is at the bottom of 

the pool. Entrance at any other time will disengage a mechanical clute h and 

the source will drop to the bottom of the pool. A flashing "in-air" warning 

light, located in the maze corridor, gives visual indication when the source is 

not fully at the bottom of the pool. 
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2. Dosimetry 

Gamma dose rate measurements are made by ferrous ammonium sulfate 

(Fricke) or with thermal luminescent dosimeters. In the present investigation 

both in-air and in-water gamma dose rate measurements were made using the 

Fricke dosimetric method described below. 

The chemical reaction which is the most widely used for Fricke dosimetry 

is the oxidation of ferrous ions to ferric ions in 0. 8 normal solution of sulphuric 

acid. This systemEl has been found to be satisfactory over a wide range of 

conditions. The method most satisfactory for preparing the solutions isE 2: dis-

3 solved 2 g of Feso4 • 7H2o or Fe(NH3)2 (S04)2 • 6H20, 0.3 g NaCl and 110 em 

concentrated (95-98%) H2So4 (analytical reagent grade) in sufficient distilled 

water to make 5 liters of solution. (The chloride ions inhibit the oxidation of 

ferrous ions by certain organic impurities in the system.) 

The aliquots are filled with Fricke solution and placed in the sample chamber, 

together with the devices being irradiated. The exact time period for each irradia-

tion run is noted, for both in-air and in-water irradiations. 

The common method for determining the amount of ferric ion which has 

been produced by the absorbed radiation is spectrophotometric analysis. The 

ferric ion absorption has a maximum at approximately 304~h. To determine the 

amount of Fe+++ the transmission of the irradiated sample is compared with that 
' 

of a non-irradiated sample. A Beckman model DB spectrophotometer equipped 

with a thermostated hydrogen lamp and quartz cell is used. 
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The dose rate is given by the formula E 2 : 

R(rads/hr) (A -A ) 
sample blank 

4 
2. 83 X 10 (A -A ) 

sample blank 
bt 

where 

A sample and Ablank == absorbancy (optical density of irradiated and 

unirradiated solutions respectively). 

e molar extinction coefficient 

Y ferrous sulfate yield in micromolcs 

of ferric ions/liter per 1000 rads. 

b sample cell thickness, in em. 

t == irradiation time in hrs. 

The ferrous sulfate dosimetric method is suitable for measuring doses 

0 h f 3 4 1n t e range o 10 to 4. 0 x 10 rads, and hence cannot be used for larger absorbed 

doses. The indications of the dosimeter are independent of the radiation energy 

within 0. 03 Mev- 30 MeV and for dose rates up to about 108 rads/secE 3 . Since 

total dose values in the present investigation exceed the maximum measurable 

by Fricke dosimetry, calibration is necessary, assuming a linear relationship 

between absorbed dose and time. 
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APPENDIX F: BULK AND SURFACE DAMAGE EFFECTS AS RELATED 

TO THE PROBLEM OF NUCLEAR RADIATION OF SEMI­

CONDUCTOR DEVICES 

Much work has been done on both permanent and transient radiation effects 

on semiconductor materials and semiconductor devicesFl, F 2 . A very small amount 

of work has involved detailed examination of the degradation of transistor current 

. F3-F7 
gam . Most of the investigations have centered on characterizing parameters 

t t . ul b" d·t· F8-F17 a par 1c ar Ias con 1 wns , or in measuring the effects of radiation on 

bulk semiconductor materials . 

Transient radiation effects in semiconductor materials and devices arc 

associated with the creation, by ionization, of excess hole-electron pairs. Trans-

ient radiation effects disappear after the exciting radiation is removed in times 

on the order of the minority carrier lifetime. Permanent radiation effects arc 

associated with damage to the lattice, whether or not the damage anneals out 

with time and temperature. SanderF17 has recently shown that significant annealing 

is completed in times of the order of tens of seconds after the irradiation is stopped. 

HoodFlS found the remaining damage to be stable at room temperature with less 

than a three percent change in 3, 000 hours, although recent studiesF 19 indicate 

a somewhat larger change. The permanent damage with which this research is 

concerned is the room temperature stable permanent damage. 

Surface effects in silicon transistors have been considered to be unpre-

dictable because the response of a semiconductor p-n junction to ionizing radiation 

varies with initial surface conditions and junction bias during irradiation. Ionizing 
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radiation induced surface effects in silicon bipolar transistors have been studied 

b 1 . t· t F20-F29 
y severa 1nves 1ga ors , using electrons, Co-60 gamma rays and x-rays 

as radiation sources. The degradation in silicon surface properties is manifested 

b th d 1 t· · · f F25 F26 y e ep e 1on or mvers1on o surfaces ' , changes in surface recombination 

1 ·t d · t· h t . . F27, F28 ve oc1 y an p-n June 1on c arac enshcs . Certain radiation environments, 

such as those found in the core of a swimming pool reactor, have a combined neutron 

and gamma field which will simultaneously induce surface and bulk damage in semi-

conductor devices. A typical swimming pool reactor has a gamma dose of 1. s x 

10 4 rads (Si) which accompanies a neutron fluence of 1. 6 x 1012 neutrons/em 2 

(E > lOeV). Hence, at lower values of neutron fluence, where the gamma dose 

is appreciable, surface effects caused by ionizing radiation, dominate the changes 

in transistor characteristics. But surface effects generally saturate at about 

6 14 2 
10 rads (this corresponds to a neutron flux of approximately 10 neutrons/em ) . 

In the study of bulk damage constant, minority carrier lifetime, etc, the contribution 

due to the surface effects should be taken into consideration. In contrast to bulk 

effects, the surface radiation effects are very poorly understood and in general 

not characterized very well. Several years ago, before the present sophistication 

in surface processing, experiments were carried out in an attempt to characterize 

radiation surface effects (changes in junction current, breakdown voltage, current 

gain, etc.) No systematic picture evolved, although surface cleanliness seemed 

certain to play some role. Transistors that have been made after refinements in 

junction formation and surface treatment techniques have in the last few years been exa­

F20-F26 
mined in a variety of gamma-ray environments 
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Crystal lattice defects caused by radiation damage act as recombination 

sites and hence decrease the minority carrier lifetime. Crystal lattice defects, 

through impurity scattering and compensation of shallow impurities, reduce the 

carrier mobilities and the carrier concentration. Fast neutron irradiation is 

particularly damaging to crystal lattices because thousands of atoms may be 

removed from their lattice sites as the result of a single collision F 29 

The observed decrease in transistor current gain resulting from exposure 

of transistors to neutron irradiation had, in the past, been attributed primarily 

to the neutron-induced reduction in minority carrier lifetime in the base region, 

that is, to the resultant reduction of the base recombination termF 3 -F7 . Recent 

investigationsF 30 • F 3 l have shown that the fall off of the transistor current 

gain at low currents in non irradiated transistors is caused by the reduction 

in the emitter efficiency. This suggested that emitter efficiency was important 

in transistor gain changes resulting from irradiation. To ascertain the role of 

emitter efficiency, a more detailed study of the degradation of transistors in a 

radiation environment was required. Such a study was reported by Goben and 

F32 
Smits in 1964. 

Several components of base current have been identified in non-irradiated 

transistors. The first of these, the bulk recombination-generation current, or 

F34 
the ideal diffusion current for uniform base situation by Moll and Ross . It 

has a voltage dependence of exp (qV /kT). The second component is a recombin-

F3 

ation current in the transition (space -charge) region. The voltage dependence of 

F35 
this second component approximates exp (qV /2kT) at low current densities . 
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A third component, the surface-perimeter component, has been found to 

originate at the perimeter of the em1·tterF30, F31 • F36 
, that is, where the 

emitter-base jrmction intersects the surface Iwersen et al F 30 d · . suppresse 

this component by placing a guard ring on the emitter and applying a bias from 

F4 

emitter contact to guard ring. The voltage dependence of this particular compon-

ent of current varies as exp (qV /nkT), where n is approximately 1. 5. A 

fourth component, the surface current, stems from surface channels and 

varies with voltage as exp (qV /mkT), where m is usually between two and four 

for silicon junctions, although values larger than four have been noted for 

1 han 1 F30, F35, F36 
arge c ne s 

As was shown in the work by Goben and SmitsF28 , neutron radiation of 

p -n junction devices produces a component of current which varies as exp 

(qV /nkT), where n is approximately 1. 5 at room temperature and varies from 

0 0 
1. 3 to 1. 7 as the temperature ranges from 100 C to -50 C. This component of 

current is induced in the bulk transition region and dominates the transistor 

current gain over a wide range of current levels. These findings imply that 

emitter efficiency played a much more important role in radiation-induced 

changes in current gain than had been assumed in the past. 

F28 F37 . 
In 1964, Goben ' reported a base current w1th a voltage dependence 

of exp (qV /nkT), n = 1. 5, which was observed to increase in proportion to neutron 

fluence upon exposure to neutron radiation. From a study of the base resistance 

F28, F37 ha h" through which this current component flows, Goben showed t t t IS com 

ponent is of bulk and not of perimeter origin and must be attributed to recombina-

tion in the bulk space-charge region. This current component dominates transistor 
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gain over a wide range of current density and is primarily responsible for 

degradation of transistor current gain by decreasing the emitter efficiency. 
F38 

Goben (1965) in the analyses of the deviation of the characteristics from 

an exponential caused by the emission concentration in "ring dot" structures 

and the transverse bias dependence of the base current components for a 

special "tetrode -type" test structure, found that the small "1. 5 component" 

of current initially present is indeed of surface-perimeter origin while the 

added "1. 5 component" of current induced by neutron bombardment is of 

bulk space charge origin. As investigation was made of many different types 

of silicon transistors, and all were found to exhibit a similar neutron induced 

component. In this work, GobenF 38 also found an apparent difference in 

annealing rates for the neutral base region and the space -charge region of 

the emitter-base junction. 

Work by Goben et al. F 39 (1968) indicated, from a study of base and 

collector current as a function of the emitter -to-base voltage, that the neutron-

induced base current has components originating in the emitter space-charge 

region as well as the neutral base region. At low injection levels the neutron-

induced base current was dominated by the space -charge component, whereas 

the high injection behavior appeared to be controlled by recombination in the 

neutral base region. Additional experiments performed in special tetrode 

transistors and van der Pauwtype samples indicated that changes in collector 

current were dominated by recombination in the neutral base, while changes in 

base doping and mobility had only a secondary effect. These conclusions were 

reached from experiments on transistors with a ring emitter, on tetrode type 

test transistors, and on special Hall effect devices. 

F5 
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F40 
Chott and Goben (1967) found indications that the origin of the anomalous 

annealing was one, or a combination, of the following mechanisms: a quasi-tun­

neling recombination phenomena in the emitter-base space-charge region, or a 

dependence of the neutron-induced defect centers on the p-n junction field. A 

field dependence appeared to be present, but it was not certain whether the 

quasi-tunneling phenomena occurred, although it was shown that it is possible 

for such phenomena to occur. The annealing characteristics of the defects causing 

changes in the collector and base currents were obtained. Three sets of deviecs 

were irradiated and then annealed, with one set having a forward bias during 

annealing, one set having no bias, and one set having a reverse bias. The de-

pendence of the field on annealing was present but appeared quite complex. The 

presence of the externally applied field during annealing appeared to enhance the 

annealing of neutron-induced defects regardless of whether the junction was for-

ward or reverse biased. 
41 

Su et al. (1968) have shown that the neutron-induced 

defect clusters in silicon transistors behave differently in the high field emitter-

base "space-charge" region than in the low field "neutral" bulk-base reg-ion both 

during introduction and annealing. This anomalous behavior in both formation 

. d . ff F42 and annealing has been attributed by some authors to carr1er ens1ty e ects 

. F40, F41 or to a modification of the defect cluster by the presence of an electric held. 

Recent investigations of neutron-induced defect structures in bulk semi-

conductors have led to the postulation of a spherical low-density region of dis­

F43 
order surrounded by a space-charge region. Gossick and Cleland and 

CrawfordF44 visualize this region as being depleted of charge carriers and acting 

essentially as an insulating void, thereby, limiting local current flow. Cleland 
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F7 

F44 
and Crawford have shown both theoretically and experimentally that voids 

in the matrix will indeed change the bulk conductivity a~d Hall coefficient o-r semi-

co~ductor materials. Other methods for corrobo~ating the existence of the 

Gossick cluster model, inculding low angle x-ray diffraction ancl annealing studies, 

. . F45 F/±6 F47 
have been earned out by Stem , ~Than , and Fujita and Gonser . Attempts 

F43 
by Parsons et al. to view the cluster with an electron microscope m _,t with 

limited success in that the defect regions could be recognized, but their geometries 

were in question. Bertolotti F 49 has been able to photograph replicas of the defect 

regions with surprising clarity. He was able to show that the neutron-ind:.wed 

defects in his experimental samples were indeed spherical with regions of altered 

structure as predicted by Gossick's modelF 43 . Very graphic evidence that a 

space charge region d<:>es exist around the disordered regions has been obta'ned 

F±9 
by Bertolotti , using the replica tee hnique. The replicas are observed to 

contain regions which appear as small hills with a crater at the center. Tne dim en-

sion3 of the crater (assum(~d to be the region of highly localized damage) a"ld the 

hill (ac;sumnd to be the effective radius of th2 sp:1ce charge region) corrcspon~l 

exactly to those expected [rom the disordered region mod '31. The ::lisorderecl 

regions are described :n the model a3 being }wavily damaged with a defect con-

18 - 3 t 10, OOIJF 43 . The centratio'1 of ,._, 5x10 em , i.e. one lattice si e in every 

material in the disordered region is th2refore considered to he crystalline. 

F5J 
very recent experimental evidence obtained by Parsons an.d Roelke , 

showed that the structural characteristics of the disordered regions observed 

in Ge irradiated with fast neutrons or 100 keV oxygen ions were deduced from 
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FB 

their appearance in diffraction contrast and phase contrast electron microscope 

images to have an amorphous rather than a crystalline structure. Furthermore, 

each disordered region is surrounded by a non-uniform strain field extending out 

to .-v 65A 0 from the disordered region center. Although the neutron induced defect 

cluster in bulk semiconductor material has been fairly well characterized, the 

exact na:ture of the defect cluster in the space-charge region has yet to be studied. 
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